feat(hott/homotopy): more steps towards join associativity, cube composition

This commit is contained in:
Jakob von Raumer 2015-10-30 16:54:24 +00:00 committed by Leonardo de Moura
parent e1e8680474
commit 54b1d1a9fe
3 changed files with 68 additions and 9 deletions

View file

@ -12,8 +12,7 @@ open equiv equiv.ops is_equiv sigma sigma.ops
namespace eq namespace eq
inductive cube {A : Type} {a₀₀₀ : A} inductive cube {A : Type} {a₀₀₀ : A} : Π{a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
: Π{a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
@ -60,12 +59,32 @@ namespace eq
definition rfl3 : cube hrfl hrfl hrfl hrfl s₁₀₁ s₁₀₁ := !refl3 definition rfl3 : cube hrfl hrfl hrfl hrfl s₁₀₁ s₁₀₁ := !refl3
-- Variables for composition
variables {a₄₀₀ a₄₀₂ a₄₂₀ a₄₂₂ : A}
{p₃₀₀ : a₂₀₀ = a₄₀₀} {p₃₀₂ : a₂₀₂ = a₄₀₂} {p₃₂₀ : a₂₂₀ = a₄₂₀} {p₃₂₂ : a₂₂₂ = a₄₂₂}
{p₄₀₁ : a₄₀₀ = a₄₀₂} {p₄₁₀ : a₄₀₀ = a₄₂₀} {p₄₁₂ : a₄₀₂ = a₄₂₂} {p₄₂₁ : a₄₂₀ = a₄₂₂}
{s₃₀₁ : square p₃₀₀ p₃₀₂ p₂₀₁ p₄₀₁}
{s₃₁₀ : square p₂₁₀ p₄₁₀ p₃₀₀ p₃₂₀}
{s₃₁₂ : square p₂₁₂ p₄₁₂ p₃₀₂ p₃₂₂}
{s₃₂₁ : square p₃₂₀ p₃₂₂ p₂₂₁ p₄₂₁}
{s₄₁₁ : square p₄₁₀ p₄₁₂ p₄₀₁ p₄₂₁}
(d : cube s₃₁₀ s₃₁₂ s₂₁₁ s₄₁₁ s₃₀₁ s₃₂₁)
/- Composition of Cubes -/
include c d
definition concat1 : cube (s₁₁₀ ⬝h s₃₁₀) _ s₀₁₁ s₄₁₁ _ _ :=
begin
end
omit c d
definition eq_of_cube (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) : definition eq_of_cube (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ = transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ =
whisker_square (eq_bot_of_square s₀₁₁) (eq_bot_of_square s₂₁₁) idp idp s₁₁₂ := whisker_square (eq_bot_of_square s₀₁₁) (eq_bot_of_square s₂₁₁) idp idp s₁₁₂ :=
by induction c; reflexivity by induction c; reflexivity
--set_option pp.implicit true
definition eq_of_vdeg_cube {s s' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} definition eq_of_vdeg_cube {s s' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
(c : cube s s' vrfl vrfl vrfl vrfl) : s = s' := (c : cube s s' vrfl vrfl vrfl vrfl) : s = s' :=
begin begin

View file

@ -500,8 +500,12 @@ namespace eq
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩ by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
--TODO find better names --TODO find better names
definition square_Fl_Fl_ap_idp {A B : Type} {b : B} {f : A → B} (p : Π a, f a = b) definition square_Flr_ap_idp {A B : Type} {b : B} {f : A → B} (p : Π a, f a = b)
{a₀ a₁ : A} (q : a₀ = a₁) : square (p a₀) (p a₁) (ap f q) idp := {a b : A} (q : a = b) : square (p a) (p b) (ap f q) idp :=
by induction q; apply vrfl by induction q; apply vrfl
definition square_ap_idp_Flr {A B : Type} {b : B} {f : A → B} (p : Π a, f a = b)
{a b : A} (q : a = b) : square (ap f q) idp (p a) (p b) :=
by induction q; apply hrfl
end eq end eq

View file

@ -97,7 +97,7 @@ namespace join
variables {A B C : Type} variables {A B C : Type}
private definition switch_left : join A B → join (join C B) A := private definition switch_left [reducible] : join A B → join (join C B) A :=
begin begin
intro x, induction x with a b, exact inr a, exact inl (inr b), apply !jglue⁻¹, intro x, induction x with a b, exact inr a, exact inl (inr b), apply !jglue⁻¹,
end end
@ -112,10 +112,10 @@ namespace join
begin begin
induction ab with a b, apply !jglue⁻¹, apply ap inl !jglue⁻¹, induction x with a b, induction ab with a b, apply !jglue⁻¹, apply ap inl !jglue⁻¹, induction x with a b,
apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹, refine _ ⬝vp !ap_inv⁻¹, apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹, refine _ ⬝vp !ap_inv⁻¹,
apply (switch_coh_fill _ _ _).1, apply !switch_coh_fill.1,
end end
protected definition switch : join (join A B) C → join (join C B) A := protected definition switch [reducible] : join (join A B) C → join (join C B) A :=
begin begin
intro x, induction x with ab c, exact switch_left ab, exact inl (inl c), intro x, induction x with ab c, exact switch_left ab, exact inl (inl c),
induction x with ab c, exact switch_coh ab c, induction x with ab c, exact switch_coh ab c,
@ -136,7 +136,43 @@ namespace join
square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (jglue (inl a) c) := square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (jglue (inl a) c) :=
begin begin
refine hrfl ⬝h _, refine hrfl ⬝h _,
refine refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine hdeg_square !ap_inv ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !elim_glue)⁻¹ᵛ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_right (c : C) (b : B) :
square idp idp (ap !(@join.switch _ _ A) (switch_coh (inr b) c)) (jglue (inr b) c) :=
begin
refine hrfl ⬝h _,
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine aps join.switch (hdeg_square !ap_inv) ⬝h _,
refine hdeg_square !ap_inv ⬝h _,
refine (hdeg_square !ap_compose)⁻¹ᵛ⁻¹ʰ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !elim_glue)⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_left (ab : join A B) :
!(@join.switch C) (join.switch (inl ab)) = inl ab :=
begin
induction ab with a b, do 2 reflexivity,
induction x with a b, apply eq_pathover, exact !switch_inv_left_square,
end
section
variables (a : A) (b : B) (c : C)
check cube ids (switch_inv_left_square a b)
private definition switch_inv_cube (a : A) (b : B) (c : C) :
cube ids (switch_inv_left_square a b)
(square_Fl_Fl_ap_idp _ _) (square_Fl_Fl_ap_idp _ _)
--(switch_inv_coh_left c a) (switch_inv_coh_right c b)
:=
begin
end end