feat(library/standard): add function 'helper' module

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-24 16:29:39 -07:00
parent 5296275c41
commit 5529ef1056
2 changed files with 78 additions and 0 deletions

View file

@ -0,0 +1,55 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
namespace function
section
parameters {A : Type} {B : Type} {C : Type} {D : Type} {E : Type}
abbreviation compose (f : B → C) (g : A → B) : A → C
:= λx, f (g x)
abbreviation id (a : A) : A
:= a
abbreviation const (a : A) : B → A
:= λx, a
abbreviation on_fun (f : B → B → C) (g : A → B) : A → A → C
:= λx y, f (g x) (g y)
abbreviation combine (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E
:= λx y, op (f x y) (g x y)
end
abbreviation dcompose {A : Type} {B : A → Type} {C : Π {x : A}, B x → Type} (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x)
:= λx, f (g x)
abbreviation flip {A : Type} {B : Type} {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y
:= λy x, f x y
abbreviation app {A : Type} {B : A → Type} (f : Πx, B x) (x : A) : B x
:= f x
-- Yet another trick to anotate an expression with a type
abbreviation is_typeof (A : Type) (a : A) : A
:= a
precedence `∘`:60
precedence `∘'`:60
precedence `on`:1
precedence `$`:1
precedence `-[`:1
precedence `]-`:1
precedence `⟨`:1
infixr ∘ := compose
infixr ∘' := dcompose
infixl on := on_fun
notation `typeof` t `:` T := is_typeof T t
infixr $ := app
notation f `-[` op `]-` g := combine f op g
-- Trick for using any binary function as infix operator
notation a `⟨` f `⟩` b := f a b
end

23
tests/lean/run/fun.lean Normal file
View file

@ -0,0 +1,23 @@
import function logic num bool
using function num bool
variable f : num → bool
variable g : num → num
check f ∘ g ∘ g
check typeof id : num → num
check num → num ⟨is_typeof⟩ id
variable h : num → bool → num
check flip h
check flip h '0 zero
check typeof flip h '0 zero : num
variable f1 : num → num → bool
variable f2 : bool → num
check (f1 on f2) '0 '1