diff --git a/hott/algebra/precategory/yoneda.hlean b/hott/algebra/precategory/yoneda.hlean index 94f76e3cf..8905f7932 100644 --- a/hott/algebra/precategory/yoneda.hlean +++ b/hott/algebra/precategory/yoneda.hlean @@ -49,9 +49,9 @@ namespace functor (λd d' g, F (id, g)) (λd, !respect_id) (λd₁ d₂ d₃ g' g, calc - F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_comp c)⁻¹} - ... = F ((id,g') ∘ (id, g)) : idp - ... = F (id,g') ∘ F (id, g) : by rewrite (respect_comp F)) + F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_comp + ... = F ((id,g') ∘ (id, g)) : by esimp + ... = F (id,g') ∘ F (id, g) : by rewrite (respect_comp F)) local abbreviation Fob := @functor_curry_ob @@ -59,10 +59,10 @@ namespace functor nat_trans.mk (λd, F (f, id)) (λd d' g, calc F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F - ... = F (f, g ∘ id) : by rewrite id_left - ... = F (f, g) : by rewrite id_right - ... = F (f ∘ id, g) : by rewrite id_right - ... = F (f ∘ id, id ∘ g) : by rewrite id_left + ... = F (f, g ∘ id) : by rewrite id_left + ... = F (f, g) : by rewrite id_right + ... = F (f ∘ id, g) : by rewrite id_right + ... = F (f ∘ id, id ∘ g) : by rewrite id_left ... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ) local abbreviation Fhom := @functor_curry_hom @@ -77,10 +77,10 @@ namespace functor : Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f := nat_trans_eq_mk (λd, calc natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def - ... = F (f' ∘ f, id ∘ id) : {(id_comp d)⁻¹} - ... = F ((f',id) ∘ (f, id)) : idp - ... = F (f',id) ∘ F (f, id) : respect_comp F - ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : idp) + ... = F (f' ∘ f, id ∘ id) : by rewrite id_comp + ... = F ((f',id) ∘ (f, id)) : by esimp + ... = F (f',id) ∘ F (f, id) : respect_comp F + ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp) definition functor_curry [reducible] : C ⇒ E ^c D := functor.mk (functor_curry_ob F) @@ -98,28 +98,28 @@ namespace functor theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id := calc - Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : idp - ... = id ∘ natural_map (to_fun_hom G id) p.2 : ap (λx, x ∘ _) (respect_id (to_fun_ob G p.1) p.2) - ... = id ∘ natural_map nat_trans.id p.2 : {respect_id G p.1} - ... = id : id_comp + Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp + ... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id + ... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id + ... = id : id_comp theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p') : Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f := calc Ghom G (f' ∘ f) - = to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : idp + = to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) - ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : {respect_comp (to_fun_ob G p''.1) f'.2 f.2} + ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite (respect_comp (to_fun_ob G p''.1) f'.2 f.2) ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) - ∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : {respect_comp G f'.1 f.1} + ∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite (respect_comp G f'.1 f.1) ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) - ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : idp + ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) - ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : idp + ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2) ∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) : square_prepostcompose (!naturality⁻¹ᵖ) _ _ - ... = Ghom G f' ∘ Ghom G f : idp + ... = Ghom G f' ∘ Ghom G f : by esimp definition functor_uncurry [reducible] : C ×c D ⇒ E := functor.mk (functor_uncurry_ob G) @@ -151,10 +151,6 @@ namespace functor -- → F₁ = F₂ := -- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1)) - - set_option pp.full_names true - open tactic - print raw id --set_option pp.notation false definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F := functor_eq_mk (λp, ap (to_fun_ob F) !prod.eta) @@ -163,10 +159,10 @@ namespace functor cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g), have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g), from calc - (functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : idp + (functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp ... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id) - ... = F (f, g ∘ id) : {id_left f} - ... = F (f,g) : {id_right g}, + ... = F (f, g ∘ id) : by rewrite id_left + ... = F (f,g) : by rewrite id_right, rewrite H, apply sorry end @@ -181,12 +177,11 @@ namespace functor have H : to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g, from calc to_fun_hom (functor_curry (functor_uncurry G) c) g - = to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : idp - ... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d - : ap (λx, to_fun_hom (G c) g ∘ natural_map x d) (respect_id G c) + = to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp + ... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id ... = to_fun_hom (G c) g : id_right, rewrite H, --- esimp {idp}, + -- esimp {idp}, apply sorry } },