refactor(library/data/sigma): cleanup module

This commit is contained in:
Leonardo de Moura 2014-09-05 07:48:36 -07:00
parent 3b574ef31d
commit 561753e7f1

View file

@ -1,10 +1,8 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad -- Author: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.core.eq import logic.classes.inhabited logic.core.eq
open inhabited eq_ops
open inhabited
inductive sigma {A : Type} (B : A → Type) : Type := inductive sigma {A : Type} (B : A → Type) : Type :=
dpair : Πx : A, B x → sigma B dpair : Πx : A, B x → sigma B
@ -21,33 +19,27 @@ section
theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl
theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl
-- TODO: remove prefix when we can protect it theorem destruct [protected] {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
theorem sigma_destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
rec H p rec H p
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p := theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
sigma_destruct p (take a b, rfl) destruct p (take a b, rfl)
-- Note that we give the general statment explicitly, to help the unifier theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
theorem dpair_eq {a1 a2 : A} {b1 : B a1} {b2 : B a2} (H1 : a1 = a2) (H2 : eq.rec_on H1 b1 = b2) : dpair a₁ b₁ = dpair a₂ b₂ :=
dpair a1 b1 = dpair a2 b2 := eq.rec_on H₁
(show ∀(b2 : B a2) (H1 : a1 = a2) (H2 : eq.rec_on H1 b1 = b2), dpair a1 b1 = dpair a2 b2, from (λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
eq.rec
(take (b2' : B a1),
assume (H1' : a1 = a1),
assume (H2' : eq.rec_on H1' b1 = b2'),
show dpair a1 b1 = dpair a1 b2', from
calc calc
dpair a1 b1 = dpair a1 (eq.rec_on H1' b1) : {eq.symm (eq.rec_on_id H1' b1)} dpair a₁ b₁ = dpair a₁ (eq.rec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
... = dpair a1 b2' : {H2'}) H1) ... = dpair a₁ b₂ : {H₂})
b2 H1 H2 b₂ H₁ H₂
theorem equal [protected] {p1 p2 : Σx : A, B x} : theorem equal [protected] {p₁ p₂ : Σx : A, B x} :
∀(H1 : dpr1 p1 = dpr1 p2) (H2 : eq.rec_on H1 (dpr2 p1) = (dpr2 p2)), p1 = p2 := ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = (dpr2 p₂)), p₁ = p₂ :=
sigma_destruct p1 (take a1 b1, sigma_destruct p2 (take a2 b2 H1 H2, dpair_eq H1 H2)) destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))
theorem is_inhabited [protected] [instance] (H1 : inhabited A) (H2 : inhabited (B (default A))) : theorem is_inhabited [protected] [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
inhabited (sigma B) := inhabited (sigma B) :=
inhabited.destruct H1 (λa, inhabited.destruct H2 (λb, inhabited.mk (dpair (default A) b))) inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b)))
end end
end sigma end sigma