refactor(library/data/sigma): cleanup module
This commit is contained in:
parent
3b574ef31d
commit
561753e7f1
1 changed files with 16 additions and 24 deletions
|
@ -1,10 +1,8 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import logic.classes.inhabited logic.core.eq
|
||||
|
||||
open inhabited
|
||||
open inhabited eq_ops
|
||||
|
||||
inductive sigma {A : Type} (B : A → Type) : Type :=
|
||||
dpair : Πx : A, B x → sigma B
|
||||
|
@ -21,33 +19,27 @@ section
|
|||
theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl
|
||||
theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl
|
||||
|
||||
-- TODO: remove prefix when we can protect it
|
||||
theorem sigma_destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
|
||||
theorem destruct [protected] {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
|
||||
rec H p
|
||||
|
||||
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
|
||||
sigma_destruct p (take a b, rfl)
|
||||
destruct p (take a b, rfl)
|
||||
|
||||
-- Note that we give the general statment explicitly, to help the unifier
|
||||
theorem dpair_eq {a1 a2 : A} {b1 : B a1} {b2 : B a2} (H1 : a1 = a2) (H2 : eq.rec_on H1 b1 = b2) :
|
||||
dpair a1 b1 = dpair a2 b2 :=
|
||||
(show ∀(b2 : B a2) (H1 : a1 = a2) (H2 : eq.rec_on H1 b1 = b2), dpair a1 b1 = dpair a2 b2, from
|
||||
eq.rec
|
||||
(take (b2' : B a1),
|
||||
assume (H1' : a1 = a1),
|
||||
assume (H2' : eq.rec_on H1' b1 = b2'),
|
||||
show dpair a1 b1 = dpair a1 b2', from
|
||||
calc
|
||||
dpair a1 b1 = dpair a1 (eq.rec_on H1' b1) : {eq.symm (eq.rec_on_id H1' b1)}
|
||||
... = dpair a1 b2' : {H2'}) H1)
|
||||
b2 H1 H2
|
||||
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
|
||||
dpair a₁ b₁ = dpair a₂ b₂ :=
|
||||
eq.rec_on H₁
|
||||
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
|
||||
calc
|
||||
dpair a₁ b₁ = dpair a₁ (eq.rec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
|
||||
... = dpair a₁ b₂ : {H₂})
|
||||
b₂ H₁ H₂
|
||||
|
||||
theorem equal [protected] {p1 p2 : Σx : A, B x} :
|
||||
∀(H1 : dpr1 p1 = dpr1 p2) (H2 : eq.rec_on H1 (dpr2 p1) = (dpr2 p2)), p1 = p2 :=
|
||||
sigma_destruct p1 (take a1 b1, sigma_destruct p2 (take a2 b2 H1 H2, dpair_eq H1 H2))
|
||||
theorem equal [protected] {p₁ p₂ : Σx : A, B x} :
|
||||
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = (dpr2 p₂)), p₁ = p₂ :=
|
||||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))
|
||||
|
||||
theorem is_inhabited [protected] [instance] (H1 : inhabited A) (H2 : inhabited (B (default A))) :
|
||||
theorem is_inhabited [protected] [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
|
||||
inhabited (sigma B) :=
|
||||
inhabited.destruct H1 (λa, inhabited.destruct H2 (λb, inhabited.mk (dpair (default A) b)))
|
||||
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b)))
|
||||
end
|
||||
end sigma
|
||||
|
|
Loading…
Reference in a new issue