refactor(library): cleanup
This commit is contained in:
parent
6fc0e41439
commit
564e8f947d
2 changed files with 2 additions and 2 deletions
|
@ -297,7 +297,7 @@ section group
|
||||||
|
|
||||||
lemma is_conj.symm (a b : A) : a ~ b → b ~ a :=
|
lemma is_conj.symm (a b : A) : a ~ b → b ~ a :=
|
||||||
assume Pab, obtain x (Pconj : x ∘c b = a), from Pab,
|
assume Pab, obtain x (Pconj : x ∘c b = a), from Pab,
|
||||||
assert Pxinv : x⁻¹ ∘c x ∘c b = x⁻¹ ∘c a, from (congr_arg2 conj_by (eq.refl x⁻¹) Pconj),
|
assert Pxinv : x⁻¹ ∘c x ∘c b = x⁻¹ ∘c a, begin congruence, assumption end,
|
||||||
exists.intro x⁻¹ (eq.symm (conj_inv_cancel x b ▸ Pxinv))
|
exists.intro x⁻¹ (eq.symm (conj_inv_cancel x b ▸ Pxinv))
|
||||||
|
|
||||||
lemma is_conj.trans (a b c : A) : a ~ b → b ~ c → a ~ c :=
|
lemma is_conj.trans (a b c : A) : a ~ b → b ~ c → a ~ c :=
|
||||||
|
|
|
@ -347,7 +347,7 @@ iff_true_intro not_false
|
||||||
theorem not_congr [congr] (H : a ↔ b) : ¬a ↔ ¬b :=
|
theorem not_congr [congr] (H : a ↔ b) : ¬a ↔ ¬b :=
|
||||||
iff.intro (λ H₁ H₂, H₁ (iff.mpr H H₂)) (λ H₁ H₂, H₁ (iff.mp H H₂))
|
iff.intro (λ H₁ H₂, H₁ (iff.mpr H H₂)) (λ H₁ H₂, H₁ (iff.mp H H₂))
|
||||||
|
|
||||||
theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
|
theorem ne_self_iff_false [simp] {A : Type} (a : A) : (not (a = a)) ↔ false :=
|
||||||
iff.intro false_of_ne false.elim
|
iff.intro false_of_ne false.elim
|
||||||
|
|
||||||
theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true :=
|
theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true :=
|
||||||
|
|
Loading…
Reference in a new issue