feat(algebra/module): difference of linear operators is linear

This commit is contained in:
Rob Lewis 2016-02-17 13:46:53 -05:00 committed by Leonardo de Moura
parent 79ff2f7b8f
commit 56ca41a916

View file

@ -66,6 +66,62 @@ section left_module
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
end left_module
/- linear maps -/
structure is_linear_map [class] (R : Type) {M₁ M₂ : Type}
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
[add₁ : has_add M₁] [add₂ : has_add M₂]
(T : M₁ → M₂) :=
(additive : ∀ u v : M₁, T (u + v) = T u + T v)
(homogeneous : ∀ a : R, ∀ u : M₁, T (a • u) = a • T u)
proposition linear_map_additive (R : Type) {M₁ M₂ : Type}
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
[add₁ : has_add M₁] [add₂ : has_add M₂]
(T : M₁ → M₂) [linT : is_linear_map R T] (u v : M₁) :
T (u + v) = T u + T v :=
is_linear_map.additive smul₁ smul₂ _ _ T u v
proposition linear_map_homogeneous {R M₁ M₂ : Type}
[smul₁ : has_scalar R M₁] [smul₂ : has_scalar R M₂]
[add₁ : has_add M₁] [add₂ : has_add M₂]
(T : M₁ → M₂) [linT : is_linear_map R T] (a : R) (u : M₁) :
T (a • u) = a • T u :=
is_linear_map.homogeneous smul₁ smul₂ _ _ T a u
proposition is_linear_map_id [instance] (R : Type) {M : Type}
[smulRM : has_scalar R M] [has_addM : has_add M] :
is_linear_map R (id : M → M) :=
is_linear_map.mk (take u v, rfl) (take a u, rfl)
section is_linear_map
variables {R M₁ M₂ : Type}
variable [ringR : ring R]
variable [moduleRM₁ : left_module R M₁]
variable [moduleRM₂ : left_module R M₂]
include ringR moduleRM₁ moduleRM₂
variable T : M₁ → M₂
variable [is_linear_mapT : is_linear_map R T]
include is_linear_mapT
proposition linear_map_zero : T 0 = 0 :=
calc
T 0 = T ((0 : R) • 0) : zero_smul
... = (0 : R) • T 0 : linear_map_homogeneous T
... = 0 : zero_smul
proposition linear_map_neg (u : M₁) : T (-u) = -(T u) :=
by rewrite [-neg_one_smul, linear_map_homogeneous T, neg_one_smul]
proposition linear_map_smul_add_smul (a b : R) (u v : M₁) :
T (a • u + b • v) = a • T u + b • T v :=
by rewrite [linear_map_additive R T, *linear_map_homogeneous T]
proposition linear_map_sub (u v : M₁) : T (u - v) = T u - T v :=
by rewrite [*sub_eq_add_neg, linear_map_additive R T, linear_map_neg]
end is_linear_map
/- vector spaces -/
structure vector_space [class] (F V : Type) [fieldF : field F]