feat(hott): add cofiber of a function, prove lemma that cofibers of equivalences are contractible
This commit is contained in:
parent
f06cdff2a1
commit
56cd88267c
1 changed files with 40 additions and 0 deletions
40
hott/homotopy/cofiber.hlean
Normal file
40
hott/homotopy/cofiber.hlean
Normal file
|
@ -0,0 +1,40 @@
|
|||
/-
|
||||
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jakob von Raumer
|
||||
|
||||
The Cofiber Type
|
||||
-/
|
||||
import hit.pointed_pushout function
|
||||
|
||||
open eq pushout unit pointed is_trunc is_equiv
|
||||
|
||||
definition cofiber {A B : Type} (f : A → B) := pushout (λ (a : A), ⋆) f
|
||||
|
||||
namespace cofiber
|
||||
section
|
||||
parameters {A B : Type} (f : A → B)
|
||||
|
||||
protected definition base : cofiber f := inl ⋆
|
||||
|
||||
protected definition cod : B → cofiber f := inr
|
||||
|
||||
protected definition contr_of_equiv [H : is_equiv f] : is_contr (cofiber f) :=
|
||||
begin
|
||||
fapply is_contr.mk, exact base,
|
||||
intro a, induction a with [u, b],
|
||||
{ cases u, reflexivity },
|
||||
{ exact !glue ⬝ ap inr (right_inv f b) },
|
||||
{ apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, refine !ap_constant ⬝ph _,
|
||||
esimp, krewrite adj, apply move_bot_of_left, krewrite idp_con,
|
||||
apply transpose, refine _ ⬝hp !ap_compose, apply square_Flr_idp_ap },
|
||||
end
|
||||
|
||||
end
|
||||
end cofiber
|
||||
|
||||
-- Pointed version
|
||||
|
||||
definition Cofiber {A B : Type*} (f : A →* B) : Type* := Pushout (pconst A Unit) f
|
||||
|
||||
|
Loading…
Reference in a new issue