feat(library/data/list/perm): add perm_ext theorem
This commit is contained in:
parent
64173ddf93
commit
571ff76080
1 changed files with 47 additions and 0 deletions
|
@ -634,4 +634,51 @@ assume p, by_cases
|
||||||
assert nainl₂ : a ∉ l₂, from not_mem_perm p nainl₁,
|
assert nainl₂ : a ∉ l₂, from not_mem_perm p nainl₁,
|
||||||
by rewrite [insert_eq_of_not_mem nainl₁, insert_eq_of_not_mem nainl₂]; exact (skip _ p))
|
by rewrite [insert_eq_of_not_mem nainl₁, insert_eq_of_not_mem nainl₂]; exact (skip _ p))
|
||||||
end perm_insert
|
end perm_insert
|
||||||
|
|
||||||
|
/- extensionality -/
|
||||||
|
section ext
|
||||||
|
open eq.ops
|
||||||
|
|
||||||
|
theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a, a ∈ l₁ ↔ a ∈ l₂) → l₁ ~ l₂
|
||||||
|
| [] [] d₁ d₂ e := !perm.nil
|
||||||
|
| [] (a₂::t₂) d₁ d₂ e := absurd (iff.mp' (e a₂) !mem_cons) (not_mem_nil a₂)
|
||||||
|
| (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁)
|
||||||
|
| (a₁::t₁) (a₂::t₂) d₁ d₂ e :=
|
||||||
|
have a₁inl₂ : a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons,
|
||||||
|
have dt₁ : nodup t₁, from nodup_of_nodup_cons d₁,
|
||||||
|
have na₁int₁ : a₁ ∉ t₁, from not_mem_of_nodup_cons d₁,
|
||||||
|
have ex : ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split a₁inl₂,
|
||||||
|
obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from ex,
|
||||||
|
have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂),
|
||||||
|
have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂',
|
||||||
|
have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂,
|
||||||
|
have na₁s₂ : a₁ ∉ s₂, from not_mem_of_not_mem_append_right na₁s₁s₂,
|
||||||
|
have ds₁s₂ : nodup (s₁++s₂), from nodup_of_nodup_cons dt₂',
|
||||||
|
have eqv : ∀a, a ∈ t₁ ↔ a ∈ s₁++s₂, from
|
||||||
|
take a, iff.intro
|
||||||
|
(λ aint₁ : a ∈ t₁,
|
||||||
|
assert aina₂t₂ : a ∈ a₂::t₂, from iff.mp (e a) (mem_cons_of_mem _ aint₁),
|
||||||
|
have ains₁a₁s₂ : a ∈ s₁++(a₁::s₂), by rewrite [t₂_eq at aina₂t₂]; exact aina₂t₂,
|
||||||
|
or.elim (mem_or_mem_of_mem_append ains₁a₁s₂)
|
||||||
|
(λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁)
|
||||||
|
(λ aina₁s₂ : a ∈ a₁::s₂, or.elim (mem_or_mem_of_mem_cons aina₁s₂)
|
||||||
|
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ aint₁) na₁int₁)
|
||||||
|
(λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂)))
|
||||||
|
(λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂)
|
||||||
|
(λ ains₁ : a ∈ s₁,
|
||||||
|
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁),
|
||||||
|
have aina₁t₁ : a ∈ a₁::t₁, from iff.mp' (e a) aina₂t₂,
|
||||||
|
or.elim (mem_or_mem_of_mem_cons aina₁t₁)
|
||||||
|
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁)
|
||||||
|
(λ aint₁ : a ∈ t₁, aint₁))
|
||||||
|
(λ ains₂ : a ∈ s₂,
|
||||||
|
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)),
|
||||||
|
have aina₁t₁ : a ∈ a₁::t₁, from iff.mp' (e a) aina₂t₂,
|
||||||
|
or.elim (mem_or_mem_of_mem_cons aina₁t₁)
|
||||||
|
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂)
|
||||||
|
(λ aint₁ : a ∈ t₁, aint₁))),
|
||||||
|
calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext dt₁ ds₁s₂ eqv)
|
||||||
|
... ~ s₁++(a₁::s₂) : !perm_middle
|
||||||
|
... = a₂::t₂ : by rewrite t₂_eq
|
||||||
|
end ext
|
||||||
end perm
|
end perm
|
||||||
|
|
Loading…
Reference in a new issue