test(tests/lean/run): add basic ematching tests
This commit is contained in:
parent
08bb966581
commit
5844e96734
2 changed files with 57 additions and 0 deletions
12
tests/lean/run/blast_ematch2.lean
Normal file
12
tests/lean/run/blast_ematch2.lean
Normal file
|
@ -0,0 +1,12 @@
|
||||||
|
import data.nat
|
||||||
|
open nat
|
||||||
|
constant f : nat → nat
|
||||||
|
constant g : nat → nat
|
||||||
|
|
||||||
|
definition lemma1 [forward] : ∀ x, g (f x) = x :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
set_option blast.ematch true
|
||||||
|
|
||||||
|
example (a b : nat) : f a = f b → a = b :=
|
||||||
|
by blast
|
45
tests/lean/run/blast_ematch3.lean
Normal file
45
tests/lean/run/blast_ematch3.lean
Normal file
|
@ -0,0 +1,45 @@
|
||||||
|
import algebra.ring data.nat
|
||||||
|
open algebra
|
||||||
|
|
||||||
|
variables {A : Type}
|
||||||
|
|
||||||
|
section
|
||||||
|
variables [s : add_comm_monoid A]
|
||||||
|
include s
|
||||||
|
|
||||||
|
attribute add.comm [forward]
|
||||||
|
attribute add.assoc [forward]
|
||||||
|
|
||||||
|
set_option blast.simp false
|
||||||
|
set_option blast.subst false
|
||||||
|
set_option blast.ematch true
|
||||||
|
|
||||||
|
theorem add_comm_three (a b c : A) : a + b + c = c + b + a :=
|
||||||
|
by blast
|
||||||
|
|
||||||
|
theorem add.comm4 : ∀ (n m k l : A), n + m + (k + l) = n + k + (m + l) :=
|
||||||
|
by blast
|
||||||
|
end
|
||||||
|
|
||||||
|
section
|
||||||
|
variable [s : group A]
|
||||||
|
include s
|
||||||
|
|
||||||
|
attribute mul.assoc [forward]
|
||||||
|
attribute mul.left_inv [forward]
|
||||||
|
attribute one_mul [forward]
|
||||||
|
|
||||||
|
set_option blast.simp false
|
||||||
|
set_option blast.subst false
|
||||||
|
set_option blast.ematch true
|
||||||
|
|
||||||
|
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
|
||||||
|
by blast
|
||||||
|
|
||||||
|
attribute mul_one [forward]
|
||||||
|
attribute inv_mul_cancel_right [forward]
|
||||||
|
|
||||||
|
-- TODO(Leo): check if qfc can get this one
|
||||||
|
-- theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
|
||||||
|
-- by blast
|
||||||
|
end
|
Loading…
Add table
Reference in a new issue