diff --git a/library/standard/congruence.lean b/library/standard/congruence.lean index 08a6ce007..24b70f712 100644 --- a/library/standard/congruence.lean +++ b/library/standard/congruence.lean @@ -9,59 +9,137 @@ import function using function -namespace congruence - --- TODO: delete this -axiom sorry {P : Prop} : P +namespace congr -- TODO: move this somewhere else abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x -section -parameters {T1 : Type} {T2 : Type} (R1 : T1 → T1 → Prop) (R2 : T2 → T2 → Prop) (f : T1 → T2) +-- Congruence classes for unary and binary functions +-- ------------------------------------------------- -definition congruence : Prop := ∀x y : T1, R1 x y → R2 (f x) (f y) +-- TODO: call this 'class', so outside it is congruence.class +inductive struc {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) + (f : T1 → T2) : Prop := +| mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → struc R1 R2 f -theorem congr_app {H1 : congruence} {x y : T1} (H2 : R1 x y) : R2 (f x) (f y) := H1 x y H2 +abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} + {f : T1 → T2} (C : struc R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := +struc_rec id C x y -end +-- to trigger class inference +theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) + (f : T1 → T2) {C : struc R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := +struc_rec id C x y -theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) : congruence R R id := take x y H, H +-- for binary functions +inductive struc2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) + {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop := +| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) → + struc2 R1 R2 R3 f -theorem congr_const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) : - ∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), congruence R1 R2 (const T1 c) := -take T1 R1 c x y H1, H c +abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} + {T3 : Type} {R3 : T3 → T3 → Prop} + {f : T1 → T2 → T3} (C : struc2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ + : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := +struc2_rec id C x1 y1 x2 y2 -theorem congr_const_iff [instance] (T1 : Type) (R1 : T1 → T1 → Prop) (c : Prop) : - congruence R1 iff (const T1 c) := congr_const iff iff_refl T1 R1 c -theorem congr_and [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) - (H1 : congruence R iff f1) (H2 : congruence R iff f2) : - congruence R iff (λx, f1 x ∧ f2 x) := sorry +-- General tools to build instances +-- -------------------------------- -theorem congr_or [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) - (H1 : congruence R iff f1) (H2 : congruence R iff f2) : - congruence R iff (λx, f1 x ∨ f2 x) := sorry +theorem compose + {T2 : Type} {R2 : T2 → T2 → Prop} + {T3 : Type} {R3 : T3 → T3 → Prop} + {g : T2 → T3} (C2 : congr.struc R2 R3 g) + {{T1 : Type}} {R1 : T1 → T1 → Prop} + {f : T1 → T2} (C1 : congr.struc R1 R2 f) : + congr.struc R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H)) -theorem congr_implies [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) - (H1 : congruence R iff f1) (H2 : congruence R iff f2) : - congruence R iff (λx, f1 x → f2 x) := sorry +theorem compose21 + {T2 : Type} {R2 : T2 → T2 → Prop} + {T3 : Type} {R3 : T3 → T3 → Prop} + {T4 : Type} {R4 : T4 → T4 → Prop} + {g : T2 → T3 → T4} (C3 : congr.struc2 R2 R3 R4 g) + ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} + {f1 : T1 → T2} (C1 : congr.struc R1 R2 f1) + {f2 : T1 → T3} (C2 : congr.struc R1 R3 f2) : + congr.struc R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H)) -theorem congr_iff [instance] (T : Type) (R : T → T → Prop) (f1 f2 : T → Prop) - (H1 : congruence R iff f1) (H2 : congruence R iff f2) : - congruence R iff (λx, f1 x ↔ f2 x) := sorry +theorem trivial [instance] {T : Type} (R : T → T → Prop) : struc R R id := +mk (take x y H, H) -theorem congr_not [instance] (T : Type) (R : T → T → Prop) (f : T → Prop) - (H : congruence R iff f) : - congruence R iff (λx, ¬ f x) := sorry +theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) : + ∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), struc R1 R2 (function.const T1 c) := +take T1 R1 c, mk (take x y H1, H c) + +-- instances for logic +-- ------------------- + +-- TODO: swap order for and_elim? + +abbreviation imp (a b : Prop) : Prop := a → b + +theorem and_imp_and {a b c d : Prop} (H1 : a ∧ b) (H2 : a → c) (H3 : b → d) : c ∧ d := +and_elim (assume Ha : a, assume Hb : b, and_intro (H2 Ha) (H3 Hb)) H1 + +theorem imp_and_left {a b c : Prop} (H1 : a ∧ c) (H : a → b) : b ∧ c := +and_elim (assume Ha : a, assume Hc : c, and_intro (H Ha) Hc) H1 + +theorem imp_and_right {a b c : Prop} (H1 : c ∧ a) (H : a → b) : c ∧ b := +and_elim (assume Hc : c, assume Ha : a, and_intro Hc (H Ha)) H1 + +theorem congr_not : congr.struc iff iff not := +congr.mk + (take a b, + assume H : a ↔ b, iff_intro + (assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2)) + (assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2))) + +theorem congr_and : congr.struc2 iff iff iff and := +congr.mk2 + (take a1 b1 a2 b2, + assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, + iff_intro + (assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2)) + (assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2))) + +theorem congr_or : congr.struc2 iff iff iff or := +congr.mk2 + (take a1 b1 a2 b2, + assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, + iff_intro + (assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2)) + (assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2))) + +theorem congr_imp : congr.struc2 iff iff iff imp := +congr.mk2 + (take a1 b1 a2 b2, + assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, + iff_intro + (assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1))) + (assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1)))) + +theorem congr_iff : congr.struc2 iff iff iff iff := +congr.mk2 + (take a1 b1 a2 b2, + assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, + iff_intro + (assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2)) + (assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2)))) + +theorem congr_const_iff [instance] := congr.const iff iff_refl +theorem congr_not_compose [instance] := congr.compose congr_not +theorem congr_and_compose [instance] := congr.compose21 congr_and +theorem congr_or_compose [instance] := congr.compose21 congr_or +theorem congr_implies_compose [instance] := congr.compose21 congr_imp +theorem congr_iff_compose [instance] := congr.compose21 congr_iff + +theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : struc R iff P} + {a b : T} (H : R a b) (H1 : P a) : P b := iff_mp_left (app C H) H1 theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) := - congr_app iff iff _ H1 - -theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {Hcongr : congruence R iff P} - {a b : T} (H : R a b) (H1 : P a) : P b := -iff_mp_left (@congr_app _ _ R iff P Hcongr _ _ H) H1 +congr.infer iff iff _ H1 theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) := subst_iff H1 H2