feat(library/data/perm): add more theorems
This commit is contained in:
parent
92d6e93971
commit
5a394ac7ea
1 changed files with 26 additions and 0 deletions
|
@ -148,4 +148,30 @@ theorem perm_rev : ∀ (l : list A), l ~ (reverse l)
|
||||||
x::xs ~ xs++[x] : perm_cons_app x xs
|
x::xs ~ xs++[x] : perm_cons_app x xs
|
||||||
... ~ reverse xs ++ [x] : perm_app_left [x] (perm_rev xs)
|
... ~ reverse xs ++ [x] : perm_app_left [x] (perm_rev xs)
|
||||||
... = reverse (x::xs) : by rewrite [reverse_cons, concat_eq_append]
|
... = reverse (x::xs) : by rewrite [reverse_cons, concat_eq_append]
|
||||||
|
|
||||||
|
theorem perm_middle (a : A) (l₁ l₂ : list A) : (a::l₁)++l₂ ~ l₁++(a::l₂) :=
|
||||||
|
calc
|
||||||
|
(a::l₁) ++ l₂ = a::(l₁++l₂) : rfl
|
||||||
|
... ~ l₁++l₂++[a] : perm_cons_app
|
||||||
|
... = l₁++(l₂++[a]) : append.assoc
|
||||||
|
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
|
||||||
|
|
||||||
|
theorem perm_cons_app_cons {l l₁ l₂ : list A} (a : A) : l ~ l₁++l₂ → a::l ~ l₁++(a::l₂) :=
|
||||||
|
assume p, calc
|
||||||
|
a::l ~ l++[a] : perm_cons_app
|
||||||
|
... ~ l₁++l₂++[a] : perm_app_left [a] p
|
||||||
|
... = l₁++(l₂++[a]) : append.assoc
|
||||||
|
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
|
||||||
|
|
||||||
|
theorem perm_indunction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂)
|
||||||
|
(h₁ : P [] [])
|
||||||
|
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
|
||||||
|
(h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂))
|
||||||
|
(h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃)
|
||||||
|
: P l₁ l₂ :=
|
||||||
|
have P_refl : ∀ l, P l l
|
||||||
|
| [] := h₁
|
||||||
|
| (x::xs) := h₂ x xs xs !refl (P_refl xs),
|
||||||
|
perm.induction_on p h₁ h₂ (λ x y l, h₃ x y l l !refl !P_refl) h₄
|
||||||
|
|
||||||
end perm
|
end perm
|
||||||
|
|
Loading…
Reference in a new issue