Remove useless is_* functions. We can use equality for that (more readable and similar performance).

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-08-07 08:34:50 -07:00
parent 2d27573e0c
commit 5acedcddbb
4 changed files with 1 additions and 44 deletions

View file

@ -13,7 +13,6 @@ Author: Leonardo de Moura
namespace lean {
expr mk_int_type();
#define Int mk_int_type()
bool is_int_type(expr const & e);
expr mk_int_value(mpz const & v);
inline expr mk_int_value(int v) { return mk_int_value(mpz(v)); }
@ -22,35 +21,27 @@ bool is_int_value(expr const & e);
mpz const & int_value_numeral(expr const & e);
expr mk_int_add_fn();
bool is_int_add_fn(expr const & e);
inline expr iAdd(expr const & e1, expr const & e2) { return mk_app(mk_int_add_fn(), e1, e2); }
expr mk_int_sub_fn();
bool is_int_sub_fn(expr const & e);
inline expr iSub(expr const & e1, expr const & e2) { return mk_app(mk_int_sub_fn(), e1, e2); }
expr mk_int_mul_fn();
bool is_int_mul_fn(expr const & e);
inline expr iMul(expr const & e1, expr const & e2) { return mk_app(mk_int_mul_fn(), e1, e2); }
expr mk_int_div_fn();
bool is_int_div_fn(expr const & e);
inline expr iDiv(expr const & e1, expr const & e2) { return mk_app(mk_int_div_fn(), e1, e2); }
expr mk_int_le_fn();
bool is_int_le_fn(expr const & e);
inline expr iLe(expr const & e1, expr const & e2) { return mk_app(mk_int_le_fn(), e1, e2); }
expr mk_int_ge_fn();
bool is_int_ge_fn(expr const & e);
inline expr iGe(expr const & e1, expr const & e2) { return mk_app(mk_int_ge_fn(), e1, e2); }
expr mk_int_lt_fn();
bool is_int_lt_fn(expr const & e);
inline expr iLt(expr const & e1, expr const & e2) { return mk_app(mk_int_lt_fn(), e1, e2); }
expr mk_int_gt_fn();
bool is_int_gt_fn(expr const & e);
inline expr iGt(expr const & e1, expr const & e2) { return mk_app(mk_int_gt_fn(), e1, e2); }
inline expr iIf(expr const & c, expr const & t, expr const & e) { return mk_if(Int, c, t, e); }

View file

@ -26,8 +26,6 @@ expr mk_type_u();
/** \brief Return the Lean Boolean type. */
expr mk_bool_type();
#define Bool mk_bool_type()
/** \brief Return true iff \c e is the Lean Boolean type. */
bool is_bool_type(expr const & e);
/** \brief Create a Lean Boolean value (true/false) */
expr mk_bool_value(bool v);
@ -47,9 +45,6 @@ bool is_false(expr const & e);
/** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */
expr mk_if_fn();
/** \brief Return true iff \c e is the Lean If-Then-Else operator */
bool is_if_fn(expr const & e);
/** \brief Return the term (if A c t e) */
inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); }
inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); }
@ -59,17 +54,12 @@ inline expr bIf(expr const & c, expr const & t, expr const & e) { return mk_bool
/** \brief Return the Lean Implies operator */
expr mk_implies_fn();
/** \brief Return true iff \c e is the Lean implies operator */
bool is_implies_fn(expr const & e);
/** \brief Return the term (e1 => e2) */
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app(mk_implies_fn(), e1, e2); }
inline expr Implies(expr const & e1, expr const & e2) { return mk_implies(e1, e2); }
/** \brief Return the Lean And operator */
expr mk_and_fn();
/** \brief Return true iff \c e is the Lean and operator. */
bool is_and_fn(expr const & e);
/** \brief Return (e1 and e2) */
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); }
inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_op(mk_and_fn(), True, num_args, args); }
@ -78,8 +68,6 @@ inline expr And(std::initializer_list<expr> const & l) { return mk_and(l.size(),
/** \brief Return the Lean Or operator */
expr mk_or_fn();
bool is_or_fn(expr const & e);
/** \brief Return (e1 Or e2) */
inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); }
inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_op(mk_or_fn(), False, num_args, args); }
@ -88,68 +76,55 @@ inline expr Or(std::initializer_list<expr> const & l) { return mk_or(l.size(), l
/** \brief Return the Lean not operator */
expr mk_not_fn();
bool is_not_fn(expr const & e);
/** \brief Return (Not e) */
inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); }
inline expr Not(expr const & e) { return mk_not(e); }
/** \brief Return the Lean forall operator. It has type: <tt>Pi (A : Type), (A -> bool) -> Bool<\tt> */
expr mk_forall_fn();
/** \brief Return true iff \c e is the Lean forall operator */
bool is_forall_fn(expr const & e);
/** \brief Return the term (Forall A P), where A is a type and P : A -> bool */
inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); }
inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); }
/** \brief Return the Lean exists operator. It has type: <tt>Pi (A : Type), (A -> Bool) -> Bool<\tt> */
expr mk_exists_fn();
/** \brief Return true iff \c e is the Lean exists operator */
bool is_exists_fn(expr const & e);
/** \brief Return the term (exists A P), where A is a type and P : A -> bool */
inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); }
inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); }
/** \brief Modus Ponens axiom */
expr mk_mp_fn();
bool is_mp_fn(const expr & e);
/** \brief (Axiom) a : Bool, b : Bool, H1 : a => b, H2 : a |- MP(a, b, H1, H2) : b */
inline expr MP(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_mp_fn(), a, b, H1, H2); }
/** \brief Discharge axiom */
expr mk_discharge_fn();
bool is_discharge_fn(const expr & e);
/** \brief (Axiom) a : Bool, b : Bool, H : a -> b |- Discharge(a, b, H) : a => b */
inline expr Discharge(expr const & a, expr const & b, expr const & H) { return mk_app(mk_discharge_fn(), a, b, H); }
/** \brief Reflexivity axiom */
expr mk_refl_fn();
bool is_refl_fn(expr const & e);
/** \brief (Axiom) A : Type u, a : A |- Refl(A, a) : a = a */
inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); }
#define Trivial Refl(Bool, True)
/** \brief Case analysis axiom */
expr mk_case_fn();
bool is_case_fn(expr const & e);
/** \brief (Axiom) P : Bool -> Bool, H1 : P True, H2 : P False, a : Bool |- Case(P, H1, H2, a) : P a */
inline expr Case(expr const & P, expr const & H1, expr const & H2, expr const & a) { return mk_app(mk_case_fn(), P, H1, H2, a); }
/** \brief Substitution axiom */
expr mk_subst_fn();
bool is_subst_fn(expr const & e);
/** \brief (Axiom) A : Type u, P : A -> Bool, a b : A, H1 : P a, H2 : a = b |- Subst(A, P, a, b, H1, H2) : P b */
inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); }
/** \brief Eta conversion axiom */
expr mk_eta_fn();
bool is_eta_fn(expr const & e);
/** \brief (Axiom) A : Type u, B : A -> Type u, f : (Pi x : A, B x) |- Eta(A, B, f) : ((Fun x : A => f x) = f) */
inline expr Eta(expr const & A, expr const & B, expr const & f) { return mk_app(mk_eta_fn(), A, B, f); }
/** \brief Implies Anti-symmetry */
expr mk_imp_antisym_fn();
bool is_imp_antisym_fn(expr const & e);
/** \brief (Axiom) a : Bool, b : Bool, H1 : a => b, H2 : b => a |- ImpAntisym(a, b, H1, H2) : a = b */
inline expr ImpAntisym(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_imp_antisym_fn(), a, b, H1, H2); }
@ -177,8 +152,5 @@ static name Name ## _name = NameObj; \
expr mk_##Name() { \
static thread_local expr r = mk_constant(Name ## _name); \
return r ; \
} \
bool is_##Name(expr const & e) { \
return is_constant(e) && const_name(e) == Name ## _name; \
}
}

View file

@ -57,7 +57,7 @@ struct infer_type_fn {
expr u = normalize(infer_type(t, ctx), m_env, ctx);
if (is_type(u))
return ty_level(u);
if (is_bool_type(u))
if (u == Bool)
return level();
std::ostringstream buffer;
buffer << "type expected, ";

View file

@ -31,8 +31,6 @@ static void tst2() {
std::cout << infer_type(mk_int_add_fn(), env) << "\n";
lean_assert(infer_type(e, env) == Int);
lean_assert(infer_type(mk_app(mk_int_add_fn(), iVal(10)), env) == (Int >> Int));
lean_assert(is_int_add_fn(mk_int_add_fn()));
lean_assert(!is_int_add_fn(mk_int_mul_fn()));
lean_assert(is_int_value(normalize(e, env)));
expr e2 = Fun("a", Int, iAdd(Const("a"), iAdd(iVal(10), iVal(30))));
std::cout << e2 << " --> " << normalize(e2, env) << "\n";
@ -49,8 +47,6 @@ static void tst3() {
std::cout << infer_type(mk_int_mul_fn(), env) << "\n";
lean_assert(infer_type(e, env) == Int);
lean_assert(infer_type(mk_app(mk_int_mul_fn(), iVal(10)), env) == arrow(Int, Int));
lean_assert(is_int_mul_fn(mk_int_mul_fn()));
lean_assert(!is_int_mul_fn(mk_int_add_fn()));
lean_assert(is_int_value(normalize(e, env)));
expr e2 = Fun("a", Int, iMul(Const("a"), iMul(iVal(10), iVal(30))));
std::cout << e2 << " --> " << normalize(e2, env) << "\n";
@ -67,8 +63,6 @@ static void tst4() {
std::cout << infer_type(mk_int_sub_fn(), env) << "\n";
lean_assert(infer_type(e, env) == Int);
lean_assert(infer_type(mk_app(mk_int_sub_fn(), iVal(10)), env) == arrow(Int, Int));
lean_assert(is_int_sub_fn(mk_int_sub_fn()));
lean_assert(!is_int_sub_fn(mk_int_add_fn()));
lean_assert(is_int_value(normalize(e, env)));
expr e2 = Fun("a", Int, iSub(Const("a"), iSub(iVal(10), iVal(30))));
std::cout << e2 << " --> " << normalize(e2, env) << "\n";