feat(set_quotient): add some properties for set_quotients

This commit is contained in:
Floris van Doorn 2015-11-20 15:23:01 -05:00 committed by Leonardo de Moura
parent 45d808ce7f
commit 5b8486a34f

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Declaration of set-quotients, i.e. quotient of a mere relation which is then set-truncated.
-/
import .quotient .trunc function
import function algebra.relation types.trunc types.eq
open eq is_trunc trunc quotient equiv
@ -23,7 +23,7 @@ section
definition eq_of_rel {a a' : A} (H : R a a') : class_of a = class_of a' :=
ap tr (eq_of_rel _ H)
theorem is_hset_set_quotient : is_hset set_quotient :=
theorem is_hset_set_quotient [instance] : is_hset set_quotient :=
begin unfold set_quotient, exact _ end
protected definition rec {P : set_quotient → Type} [Pt : Πaa, is_hset (P aa)]
@ -75,10 +75,10 @@ attribute set_quotient.class_of [constructor]
attribute set_quotient.rec set_quotient.elim [unfold 7] [recursor 7]
attribute set_quotient.rec_on set_quotient.elim_on [unfold 4]
open sigma
open sigma relation function
namespace set_quotient
variables {A : Type} (R : A → A → hprop)
variables {A B C : Type} (R : A → A → hprop) (S : B → B → hprop) (T : C → C → hprop)
definition is_surjective_class_of : is_surjective (class_of : A → set_quotient R) :=
λx, set_quotient.rec_on x (λa, tr (fiber.mk a idp)) (λa a' r, !is_hprop.elimo)
@ -98,4 +98,45 @@ namespace set_quotient
intro a a' r, apply eq_pathover, apply hdeg_square, apply elim_eq_of_rel}
end
definition code [unfold 4] (a : A) (x : set_quotient R) [H : is_equivalence R] : hprop :=
set_quotient.elim_on x (R a)
begin
intros a' a'' H1,
refine to_inv !trunctype_eq_equiv _, esimp,
apply ua,
apply equiv_of_is_hprop,
{ intro H2, exact is_transitive.trans R H2 H1},
{ intro H2, apply is_transitive.trans R H2, exact is_symmetric.symm R H1}
end
definition encode {a : A} {x : set_quotient R} (p : class_of a = x)
[H : is_equivalence R] : code R a x :=
begin
induction p, esimp, apply is_reflexive.refl R
end
definition rel_of_eq {a a' : A} (p : class_of a = class_of a' :> set_quotient R)
[H : is_equivalence R] : R a a' :=
encode R p
variables {R S T}
definition quotient_unary_map (f : A → B) (H : Π{a a'} (r : R a a'), S (f a) (f a')) :
set_quotient R → set_quotient S :=
set_quotient.elim (class_of ∘ f) (λa a' r, eq_of_rel (H r))
definition quotient_binary_map (f : A → B → C)
(H : Π{a a'} (r : R a a') {b b'} (s : S b b'), T (f a b) (f a' b'))
[HR : is_reflexive R] [HS : is_reflexive S] :
set_quotient R → set_quotient S → set_quotient T :=
begin
refine set_quotient.elim _ _,
{ intro a, refine set_quotient.elim _ _,
{ intro b, exact class_of (f a b)},
{ intro b b' s, apply eq_of_rel, apply H, apply is_reflexive.refl R, exact s}},
{ intro a a' r, apply eq_of_homotopy, refine set_quotient.rec _ _,
{ intro b, esimp, apply eq_of_rel, apply H, exact r, apply is_reflexive.refl S},
{ intro b b' s, apply eq_pathover, esimp, apply is_hset.elims}}
end
end set_quotient