feat(library/algebra/binary): add auxiliary theorems

This commit is contained in:
Leonardo de Moura 2015-04-09 11:00:59 -07:00
parent d5176ebae5
commit 5ba5e66665

View file

@ -7,9 +7,8 @@ Authors: Leonardo de Moura, Jeremy Avigad
General properties of binary operations.
-/
import logic.eq
open eq.ops
import algebra.function
open eq.ops function
namespace binary
section
@ -45,7 +44,6 @@ namespace binary
definition left_commutative [reducible] {B : Type} (f : A → B → B) := ∀ a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
end
context
variable {A : Type}
variable {f : A → A → A}
@ -76,4 +74,11 @@ namespace binary
... = a*((b*c)*d) : H_assoc
end
definition right_commutative_compose_right [reducible]
{A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) :=
λ a b₁ b₂, !rcomm
definition left_commutative_compose_left [reducible]
{A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) :=
λ a b₁ b₂, !lcomm
end binary