feat(library/algebra/binary): add auxiliary theorems
This commit is contained in:
parent
d5176ebae5
commit
5ba5e66665
1 changed files with 9 additions and 4 deletions
|
@ -7,9 +7,8 @@ Authors: Leonardo de Moura, Jeremy Avigad
|
|||
|
||||
General properties of binary operations.
|
||||
-/
|
||||
|
||||
import logic.eq
|
||||
open eq.ops
|
||||
import algebra.function
|
||||
open eq.ops function
|
||||
|
||||
namespace binary
|
||||
section
|
||||
|
@ -45,7 +44,6 @@ namespace binary
|
|||
definition left_commutative [reducible] {B : Type} (f : A → B → B) := ∀ a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
|
||||
end
|
||||
|
||||
|
||||
context
|
||||
variable {A : Type}
|
||||
variable {f : A → A → A}
|
||||
|
@ -76,4 +74,11 @@ namespace binary
|
|||
... = a*((b*c)*d) : H_assoc
|
||||
end
|
||||
|
||||
definition right_commutative_compose_right [reducible]
|
||||
{A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) :=
|
||||
λ a b₁ b₂, !rcomm
|
||||
|
||||
definition left_commutative_compose_left [reducible]
|
||||
{A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) :=
|
||||
λ a b₁ b₂, !lcomm
|
||||
end binary
|
||||
|
|
Loading…
Reference in a new issue