refactor(kernel): remove unnecessary universe
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
a43020b31b
commit
5bee259a00
8 changed files with 32 additions and 46 deletions
|
@ -1,21 +1,14 @@
|
|||
import macros
|
||||
|
||||
universe U ≥ 1
|
||||
universe U' >= U + 1
|
||||
universe U ≥ 1
|
||||
definition TypeU := (Type U)
|
||||
|
||||
variable Bool : Type
|
||||
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
|
||||
builtin true : Bool
|
||||
builtin false : Bool
|
||||
|
||||
definition TypeU := (Type U)
|
||||
definition TypeU' := (Type U')
|
||||
|
||||
builtin eq {A : (Type U')} (a b : A) : Bool
|
||||
infix 50 = : eq
|
||||
|
||||
definition not (a : Bool) := a → false
|
||||
|
||||
notation 40 ¬ _ : not
|
||||
|
||||
definition or (a b : Bool) := ¬ a → b
|
||||
|
@ -28,11 +21,14 @@ infixr 35 && : and
|
|||
infixr 35 /\ : and
|
||||
infixr 35 ∧ : and
|
||||
|
||||
definition implies (a b : Bool) := a → b
|
||||
|
||||
builtin eq {A : (Type U)} (a b : A) : Bool
|
||||
infix 50 = : eq
|
||||
|
||||
definition neq {A : TypeU} (a b : A) := ¬ (a = b)
|
||||
infix 50 ≠ : neq
|
||||
|
||||
definition implies (a b : Bool) := a → b
|
||||
|
||||
definition iff (a b : Bool) := a = b
|
||||
infixr 25 <-> : iff
|
||||
infixr 25 ↔ : iff
|
||||
|
@ -52,25 +48,25 @@ theorem em (a : Bool) : a ∨ ¬ a
|
|||
|
||||
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
|
||||
|
||||
axiom refl {A : TypeU'} (a : A) : a = a
|
||||
axiom refl {A : TypeU} (a : A) : a = a
|
||||
|
||||
axiom subst {A : TypeU'} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
|
||||
axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
|
||||
|
||||
-- Function extensionality
|
||||
axiom funext {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
|
||||
axiom funext {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
|
||||
|
||||
-- Forall extensionality
|
||||
axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
|
||||
|
||||
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
|
||||
theorem substp {A : TypeU'} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
|
||||
theorem substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
|
||||
:= subst H1 H2
|
||||
|
||||
-- We will mark not as opaque later
|
||||
theorem not_intro {a : Bool} (H : a → false) : ¬ a
|
||||
:= H
|
||||
|
||||
theorem eta {A : TypeU'} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
|
||||
theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
|
||||
:= funext (λ x : A, refl (f x))
|
||||
|
||||
theorem trivial : true
|
||||
|
@ -154,10 +150,10 @@ theorem or_elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
|||
theorem refute {a : Bool} (H : ¬ a → false) : a
|
||||
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
|
||||
|
||||
theorem symm {A : TypeU'} {a b : A} (H : a = b) : b = a
|
||||
theorem symm {A : TypeU} {a b : A} (H : a = b) : b = a
|
||||
:= subst (refl a) H
|
||||
|
||||
theorem trans {A : TypeU'} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||||
theorem trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||||
:= subst H1 H2
|
||||
|
||||
infixl 100 ⋈ : trans
|
||||
|
@ -177,13 +173,13 @@ theorem eqt_elim {a : Bool} (H : a = true) : a
|
|||
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
|
||||
:= not_intro (λ Ha : a, H ◂ Ha)
|
||||
|
||||
theorem congr1 {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
:= substp (fun h : (∀ x : A, B x), f a = h a) (refl (f a)) H
|
||||
|
||||
theorem congr2 {A B : TypeU'} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||||
theorem congr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||||
:= substp (fun x : A, f a = f x) (refl (f a)) H
|
||||
|
||||
theorem congr {A B : TypeU'} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
|
||||
theorem congr {A B : TypeU} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
|
||||
:= subst (congr2 f H2) (congr1 b H1)
|
||||
|
||||
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x
|
||||
|
|
Binary file not shown.
|
@ -16,8 +16,6 @@ namespace lean {
|
|||
// Bultin universe variables m and u
|
||||
static level u_lvl(name("U"));
|
||||
expr const TypeU = Type(u_lvl);
|
||||
static level up_lvl(name("U'"));
|
||||
expr const TypeUp = Type(up_lvl);
|
||||
// =======================================
|
||||
|
||||
// =======================================
|
||||
|
@ -92,8 +90,8 @@ class eq_fn_value : public value {
|
|||
expr m_type;
|
||||
static expr mk_type() {
|
||||
expr A = Const("A");
|
||||
// Pi (A: TypeUp), A -> A -> Bool
|
||||
return Pi({A, TypeUp}, (A >> (A >> Bool)));
|
||||
// Pi (A: TypeU), A -> A -> Bool
|
||||
return Pi({A, TypeU}, (A >> (A >> Bool)));
|
||||
}
|
||||
public:
|
||||
eq_fn_value():m_type(mk_type()) {}
|
||||
|
|
|
@ -11,7 +11,6 @@ Author: Leonardo de Moura
|
|||
namespace lean {
|
||||
// See src/builtin/kernel.lean for signatures.
|
||||
extern expr const TypeU;
|
||||
extern expr const TypeUp;
|
||||
|
||||
/** \brief Return the Lean Boolean type. */
|
||||
expr mk_bool_type();
|
||||
|
|
|
@ -6,14 +6,13 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
#include "kernel/environment.h"
|
||||
#include "kernel/decl_macros.h"
|
||||
namespace lean {
|
||||
MK_CONSTANT(Bool, name("Bool"));
|
||||
MK_CONSTANT(TypeU, name("TypeU"));
|
||||
MK_CONSTANT(TypeU_, name("TypeU_"));
|
||||
MK_CONSTANT(Bool, name("Bool"));
|
||||
MK_CONSTANT(not_fn, name("not"));
|
||||
MK_CONSTANT(or_fn, name("or"));
|
||||
MK_CONSTANT(and_fn, name("and"));
|
||||
MK_CONSTANT(neq_fn, name("neq"));
|
||||
MK_CONSTANT(implies_fn, name("implies"));
|
||||
MK_CONSTANT(neq_fn, name("neq"));
|
||||
MK_CONSTANT(iff_fn, name("iff"));
|
||||
MK_CONSTANT(exists_fn, name("exists"));
|
||||
MK_CONSTANT(em_fn, name("em"));
|
||||
|
|
|
@ -5,12 +5,10 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
// Automatically generated file, DO NOT EDIT
|
||||
#include "kernel/expr.h"
|
||||
namespace lean {
|
||||
expr mk_Bool();
|
||||
bool is_Bool(expr const & e);
|
||||
expr mk_TypeU();
|
||||
bool is_TypeU(expr const & e);
|
||||
expr mk_TypeU_();
|
||||
bool is_TypeU_(expr const & e);
|
||||
expr mk_Bool();
|
||||
bool is_Bool(expr const & e);
|
||||
expr mk_not_fn();
|
||||
bool is_not_fn(expr const & e);
|
||||
inline bool is_not(expr const & e) { return is_app(e) && is_not_fn(arg(e, 0)); }
|
||||
|
@ -23,14 +21,14 @@ expr mk_and_fn();
|
|||
bool is_and_fn(expr const & e);
|
||||
inline bool is_and(expr const & e) { return is_app(e) && is_and_fn(arg(e, 0)); }
|
||||
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app({mk_and_fn(), e1, e2}); }
|
||||
expr mk_neq_fn();
|
||||
bool is_neq_fn(expr const & e);
|
||||
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
|
||||
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
|
||||
expr mk_implies_fn();
|
||||
bool is_implies_fn(expr const & e);
|
||||
inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); }
|
||||
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app({mk_implies_fn(), e1, e2}); }
|
||||
expr mk_neq_fn();
|
||||
bool is_neq_fn(expr const & e);
|
||||
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
|
||||
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
|
||||
expr mk_iff_fn();
|
||||
bool is_iff_fn(expr const & e);
|
||||
inline bool is_iff(expr const & e) { return is_app(e) && is_iff_fn(arg(e, 0)); }
|
||||
|
|
|
@ -48,7 +48,7 @@ class type_checker::imp {
|
|||
return u;
|
||||
if (has_metavar(u) && m_menv && m_uc) {
|
||||
justification jst = mk_type_expected_justification(ctx, s);
|
||||
m_uc->push_back(mk_convertible_constraint(ctx, e, TypeUp, jst));
|
||||
m_uc->push_back(mk_convertible_constraint(ctx, e, TypeU, jst));
|
||||
return u;
|
||||
}
|
||||
u = normalize(e, ctx, true);
|
||||
|
|
|
@ -1136,12 +1136,12 @@ class elaborator::imp {
|
|||
// We approximate and only consider the most useful ones.
|
||||
justification new_jst(new destruct_justification(c));
|
||||
if (is_bool(a)) {
|
||||
expr choices[4] = { Bool, Type(), TypeU, TypeUp };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 4, choices, new_jst));
|
||||
expr choices[3] = { Bool, Type(), TypeU };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
|
||||
return true;
|
||||
} else if (m_env->is_ge(ty_level(a), m_U)) {
|
||||
expr choices[3] = { a, Type(ty_level(a) + 1), TypeUp };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
|
||||
expr choices[2] = { a, Type(ty_level(a) + 1) };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 2, choices, new_jst));
|
||||
return true;
|
||||
} else {
|
||||
expr choices[4] = { a, Type(ty_level(a) + 1), TypeU };
|
||||
|
@ -1210,10 +1210,6 @@ class elaborator::imp {
|
|||
expr choices[4] = { TypeU, Type(level() + 1), Type(), Bool };
|
||||
push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst));
|
||||
return true;
|
||||
} else if (b == TypeUp) {
|
||||
expr choices[5] = { TypeUp, TypeU, Type(level() + 1), Type(), Bool };
|
||||
push_active(mk_choice_constraint(get_context(c), a, 5, choices, new_jst));
|
||||
return true;
|
||||
} else {
|
||||
level const & lvl = ty_level(b);
|
||||
lean_assert(!lvl.is_bottom());
|
||||
|
|
Loading…
Reference in a new issue