refactor(kernel): remove unnecessary universe

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-16 18:06:25 -08:00
parent a43020b31b
commit 5bee259a00
8 changed files with 32 additions and 46 deletions

View file

@ -1,21 +1,14 @@
import macros import macros
universe U ≥ 1 universe U ≥ 1
universe U' >= U + 1 definition TypeU := (Type U)
variable Bool : Type variable Bool : Type
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions -- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
builtin true : Bool builtin true : Bool
builtin false : Bool builtin false : Bool
definition TypeU := (Type U)
definition TypeU' := (Type U')
builtin eq {A : (Type U')} (a b : A) : Bool
infix 50 = : eq
definition not (a : Bool) := a → false definition not (a : Bool) := a → false
notation 40 ¬ _ : not notation 40 ¬ _ : not
definition or (a b : Bool) := ¬ a → b definition or (a b : Bool) := ¬ a → b
@ -28,11 +21,14 @@ infixr 35 && : and
infixr 35 /\ : and infixr 35 /\ : and
infixr 35 ∧ : and infixr 35 ∧ : and
definition implies (a b : Bool) := a → b
builtin eq {A : (Type U)} (a b : A) : Bool
infix 50 = : eq
definition neq {A : TypeU} (a b : A) := ¬ (a = b) definition neq {A : TypeU} (a b : A) := ¬ (a = b)
infix 50 ≠ : neq infix 50 ≠ : neq
definition implies (a b : Bool) := a → b
definition iff (a b : Bool) := a = b definition iff (a b : Bool) := a = b
infixr 25 <-> : iff infixr 25 <-> : iff
infixr 25 ↔ : iff infixr 25 ↔ : iff
@ -52,25 +48,25 @@ theorem em (a : Bool) : a ¬ a
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
axiom refl {A : TypeU'} (a : A) : a = a axiom refl {A : TypeU} (a : A) : a = a
axiom subst {A : TypeU'} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
-- Function extensionality -- Function extensionality
axiom funext {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g axiom funext {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
-- Forall extensionality -- Forall extensionality
axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x) axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit -- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
theorem substp {A : TypeU'} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b theorem substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
:= subst H1 H2 := subst H1 H2
-- We will mark not as opaque later -- We will mark not as opaque later
theorem not_intro {a : Bool} (H : a → false) : ¬ a theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H := H
theorem eta {A : TypeU'} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
:= funext (λ x : A, refl (f x)) := funext (λ x : A, refl (f x))
theorem trivial : true theorem trivial : true
@ -154,10 +150,10 @@ theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
theorem refute {a : Bool} (H : ¬ a → false) : a theorem refute {a : Bool} (H : ¬ a → false) : a
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1)) := or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
theorem symm {A : TypeU'} {a b : A} (H : a = b) : b = a theorem symm {A : TypeU} {a b : A} (H : a = b) : b = a
:= subst (refl a) H := subst (refl a) H
theorem trans {A : TypeU'} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c theorem trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H1 H2 := subst H1 H2
infixl 100 ⋈ : trans infixl 100 ⋈ : trans
@ -177,13 +173,13 @@ theorem eqt_elim {a : Bool} (H : a = true) : a
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (λ Ha : a, H ◂ Ha) := not_intro (λ Ha : a, H ◂ Ha)
theorem congr1 {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
:= substp (fun h : (∀ x : A, B x), f a = h a) (refl (f a)) H := substp (fun h : (∀ x : A, B x), f a = h a) (refl (f a)) H
theorem congr2 {A B : TypeU'} {a b : A} (f : A → B) (H : a = b) : f a = f b theorem congr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= substp (fun x : A, f a = f x) (refl (f a)) H := substp (fun x : A, f a = f x) (refl (f a)) H
theorem congr {A B : TypeU'} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b theorem congr {A B : TypeU} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
:= subst (congr2 f H2) (congr1 b H1) := subst (congr2 f H2) (congr1 b H1)
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x -- Recall that exists is defined as ¬ ∀ x : A, ¬ P x

Binary file not shown.

View file

@ -16,8 +16,6 @@ namespace lean {
// Bultin universe variables m and u // Bultin universe variables m and u
static level u_lvl(name("U")); static level u_lvl(name("U"));
expr const TypeU = Type(u_lvl); expr const TypeU = Type(u_lvl);
static level up_lvl(name("U'"));
expr const TypeUp = Type(up_lvl);
// ======================================= // =======================================
// ======================================= // =======================================
@ -92,8 +90,8 @@ class eq_fn_value : public value {
expr m_type; expr m_type;
static expr mk_type() { static expr mk_type() {
expr A = Const("A"); expr A = Const("A");
// Pi (A: TypeUp), A -> A -> Bool // Pi (A: TypeU), A -> A -> Bool
return Pi({A, TypeUp}, (A >> (A >> Bool))); return Pi({A, TypeU}, (A >> (A >> Bool)));
} }
public: public:
eq_fn_value():m_type(mk_type()) {} eq_fn_value():m_type(mk_type()) {}

View file

@ -11,7 +11,6 @@ Author: Leonardo de Moura
namespace lean { namespace lean {
// See src/builtin/kernel.lean for signatures. // See src/builtin/kernel.lean for signatures.
extern expr const TypeU; extern expr const TypeU;
extern expr const TypeUp;
/** \brief Return the Lean Boolean type. */ /** \brief Return the Lean Boolean type. */
expr mk_bool_type(); expr mk_bool_type();

View file

@ -6,14 +6,13 @@ Released under Apache 2.0 license as described in the file LICENSE.
#include "kernel/environment.h" #include "kernel/environment.h"
#include "kernel/decl_macros.h" #include "kernel/decl_macros.h"
namespace lean { namespace lean {
MK_CONSTANT(Bool, name("Bool"));
MK_CONSTANT(TypeU, name("TypeU")); MK_CONSTANT(TypeU, name("TypeU"));
MK_CONSTANT(TypeU_, name("TypeU_")); MK_CONSTANT(Bool, name("Bool"));
MK_CONSTANT(not_fn, name("not")); MK_CONSTANT(not_fn, name("not"));
MK_CONSTANT(or_fn, name("or")); MK_CONSTANT(or_fn, name("or"));
MK_CONSTANT(and_fn, name("and")); MK_CONSTANT(and_fn, name("and"));
MK_CONSTANT(neq_fn, name("neq"));
MK_CONSTANT(implies_fn, name("implies")); MK_CONSTANT(implies_fn, name("implies"));
MK_CONSTANT(neq_fn, name("neq"));
MK_CONSTANT(iff_fn, name("iff")); MK_CONSTANT(iff_fn, name("iff"));
MK_CONSTANT(exists_fn, name("exists")); MK_CONSTANT(exists_fn, name("exists"));
MK_CONSTANT(em_fn, name("em")); MK_CONSTANT(em_fn, name("em"));

View file

@ -5,12 +5,10 @@ Released under Apache 2.0 license as described in the file LICENSE.
// Automatically generated file, DO NOT EDIT // Automatically generated file, DO NOT EDIT
#include "kernel/expr.h" #include "kernel/expr.h"
namespace lean { namespace lean {
expr mk_Bool();
bool is_Bool(expr const & e);
expr mk_TypeU(); expr mk_TypeU();
bool is_TypeU(expr const & e); bool is_TypeU(expr const & e);
expr mk_TypeU_(); expr mk_Bool();
bool is_TypeU_(expr const & e); bool is_Bool(expr const & e);
expr mk_not_fn(); expr mk_not_fn();
bool is_not_fn(expr const & e); bool is_not_fn(expr const & e);
inline bool is_not(expr const & e) { return is_app(e) && is_not_fn(arg(e, 0)); } inline bool is_not(expr const & e) { return is_app(e) && is_not_fn(arg(e, 0)); }
@ -23,14 +21,14 @@ expr mk_and_fn();
bool is_and_fn(expr const & e); bool is_and_fn(expr const & e);
inline bool is_and(expr const & e) { return is_app(e) && is_and_fn(arg(e, 0)); } inline bool is_and(expr const & e) { return is_app(e) && is_and_fn(arg(e, 0)); }
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app({mk_and_fn(), e1, e2}); } inline expr mk_and(expr const & e1, expr const & e2) { return mk_app({mk_and_fn(), e1, e2}); }
expr mk_neq_fn();
bool is_neq_fn(expr const & e);
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
expr mk_implies_fn(); expr mk_implies_fn();
bool is_implies_fn(expr const & e); bool is_implies_fn(expr const & e);
inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); } inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); }
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app({mk_implies_fn(), e1, e2}); } inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app({mk_implies_fn(), e1, e2}); }
expr mk_neq_fn();
bool is_neq_fn(expr const & e);
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
expr mk_iff_fn(); expr mk_iff_fn();
bool is_iff_fn(expr const & e); bool is_iff_fn(expr const & e);
inline bool is_iff(expr const & e) { return is_app(e) && is_iff_fn(arg(e, 0)); } inline bool is_iff(expr const & e) { return is_app(e) && is_iff_fn(arg(e, 0)); }

View file

@ -48,7 +48,7 @@ class type_checker::imp {
return u; return u;
if (has_metavar(u) && m_menv && m_uc) { if (has_metavar(u) && m_menv && m_uc) {
justification jst = mk_type_expected_justification(ctx, s); justification jst = mk_type_expected_justification(ctx, s);
m_uc->push_back(mk_convertible_constraint(ctx, e, TypeUp, jst)); m_uc->push_back(mk_convertible_constraint(ctx, e, TypeU, jst));
return u; return u;
} }
u = normalize(e, ctx, true); u = normalize(e, ctx, true);

View file

@ -1136,12 +1136,12 @@ class elaborator::imp {
// We approximate and only consider the most useful ones. // We approximate and only consider the most useful ones.
justification new_jst(new destruct_justification(c)); justification new_jst(new destruct_justification(c));
if (is_bool(a)) { if (is_bool(a)) {
expr choices[4] = { Bool, Type(), TypeU, TypeUp }; expr choices[3] = { Bool, Type(), TypeU };
push_active(mk_choice_constraint(get_context(c), b, 4, choices, new_jst)); push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
return true; return true;
} else if (m_env->is_ge(ty_level(a), m_U)) { } else if (m_env->is_ge(ty_level(a), m_U)) {
expr choices[3] = { a, Type(ty_level(a) + 1), TypeUp }; expr choices[2] = { a, Type(ty_level(a) + 1) };
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst)); push_active(mk_choice_constraint(get_context(c), b, 2, choices, new_jst));
return true; return true;
} else { } else {
expr choices[4] = { a, Type(ty_level(a) + 1), TypeU }; expr choices[4] = { a, Type(ty_level(a) + 1), TypeU };
@ -1210,10 +1210,6 @@ class elaborator::imp {
expr choices[4] = { TypeU, Type(level() + 1), Type(), Bool }; expr choices[4] = { TypeU, Type(level() + 1), Type(), Bool };
push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst)); push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst));
return true; return true;
} else if (b == TypeUp) {
expr choices[5] = { TypeUp, TypeU, Type(level() + 1), Type(), Bool };
push_active(mk_choice_constraint(get_context(c), a, 5, choices, new_jst));
return true;
} else { } else {
level const & lvl = ty_level(b); level const & lvl = ty_level(b);
lean_assert(!lvl.is_bottom()); lean_assert(!lvl.is_bottom());