fix(library/tactic/inversion_tactic): improve 'cases' tactic for HoTT mode
closes #481
This commit is contained in:
parent
98cc325695
commit
5bf46d1226
6 changed files with 65 additions and 22 deletions
|
@ -106,6 +106,10 @@ namespace eq
|
|||
definition inv_inv (p : x = y) : p⁻¹⁻¹ = p :=
|
||||
eq.rec_on p idp
|
||||
|
||||
-- auxiliary definition used by 'cases' tactic
|
||||
definition elim_inv_inv {A : Type} {a b : A} {C : a = b → Type} (H₁ : a = b) (H₂ : C (H₁⁻¹⁻¹)) : C H₁ :=
|
||||
eq.rec_on (inv_inv H₁) H₂
|
||||
|
||||
/- Theorems for moving things around in equations -/
|
||||
|
||||
definition con_eq_of_eq_inv_con (p : x = z) (q : y = z) (r : y = x) :
|
||||
|
|
|
@ -15,6 +15,7 @@ name const * g_char = nullptr;
|
|||
name const * g_char_mk = nullptr;
|
||||
name const * g_dite = nullptr;
|
||||
name const * g_eq = nullptr;
|
||||
name const * g_eq_elim_inv_inv = nullptr;
|
||||
name const * g_eq_intro = nullptr;
|
||||
name const * g_eq_rec = nullptr;
|
||||
name const * g_eq_rec_eq = nullptr;
|
||||
|
@ -126,6 +127,7 @@ void initialize_constants() {
|
|||
g_char_mk = new name{"char", "mk"};
|
||||
g_dite = new name{"dite"};
|
||||
g_eq = new name{"eq"};
|
||||
g_eq_elim_inv_inv = new name{"eq", "elim_inv_inv"};
|
||||
g_eq_intro = new name{"eq", "intro"};
|
||||
g_eq_rec = new name{"eq", "rec"};
|
||||
g_eq_rec_eq = new name{"eq_rec_eq"};
|
||||
|
@ -238,6 +240,7 @@ void finalize_constants() {
|
|||
delete g_char_mk;
|
||||
delete g_dite;
|
||||
delete g_eq;
|
||||
delete g_eq_elim_inv_inv;
|
||||
delete g_eq_intro;
|
||||
delete g_eq_rec;
|
||||
delete g_eq_rec_eq;
|
||||
|
@ -349,6 +352,7 @@ name const & get_char_name() { return *g_char; }
|
|||
name const & get_char_mk_name() { return *g_char_mk; }
|
||||
name const & get_dite_name() { return *g_dite; }
|
||||
name const & get_eq_name() { return *g_eq; }
|
||||
name const & get_eq_elim_inv_inv_name() { return *g_eq_elim_inv_inv; }
|
||||
name const & get_eq_intro_name() { return *g_eq_intro; }
|
||||
name const & get_eq_rec_name() { return *g_eq_rec; }
|
||||
name const & get_eq_rec_eq_name() { return *g_eq_rec_eq; }
|
||||
|
|
|
@ -17,6 +17,7 @@ name const & get_char_name();
|
|||
name const & get_char_mk_name();
|
||||
name const & get_dite_name();
|
||||
name const & get_eq_name();
|
||||
name const & get_eq_elim_inv_inv_name();
|
||||
name const & get_eq_intro_name();
|
||||
name const & get_eq_rec_name();
|
||||
name const & get_eq_rec_eq_name();
|
||||
|
|
|
@ -10,6 +10,7 @@ char
|
|||
char.mk
|
||||
dite
|
||||
eq
|
||||
eq.elim_inv_inv
|
||||
eq.intro
|
||||
eq.rec
|
||||
eq_rec_eq
|
||||
|
|
|
@ -708,12 +708,12 @@ class inversion_tac {
|
|||
buffer<expr> hyps;
|
||||
g.get_hyps(hyps);
|
||||
lean_assert(!hyps.empty());
|
||||
expr eq = hyps.back();
|
||||
buffer<expr> eq_args;
|
||||
get_app_args(mlocal_type(eq), eq_args);
|
||||
expr const & A = whnf(eq_args[0]);
|
||||
expr lhs = whnf(eq_args[1]);
|
||||
expr rhs = whnf(eq_args[2]);
|
||||
expr Heq = hyps.back();
|
||||
buffer<expr> Heq_args;
|
||||
get_app_args(mlocal_type(Heq), Heq_args);
|
||||
expr const & A = whnf(Heq_args[0]);
|
||||
expr lhs = whnf(Heq_args[1]);
|
||||
expr rhs = whnf(Heq_args[2]);
|
||||
constraint_seq cs;
|
||||
if (m_proof_irrel && m_tc.is_def_eq(lhs, rhs, justification(), cs) && !cs) {
|
||||
// deletion transition: t == t
|
||||
|
@ -744,7 +744,7 @@ class inversion_tac {
|
|||
else
|
||||
throw inversion_exception();
|
||||
}
|
||||
expr no_confusion = mk_app(mk_app(mk_constant(no_confusion_name, cons(g_lvl, const_levels(A_fn))), A_args), g_type, lhs, rhs, eq);
|
||||
expr no_confusion = mk_app(mk_app(mk_constant(no_confusion_name, cons(g_lvl, const_levels(A_fn))), A_args), g_type, lhs, rhs, Heq);
|
||||
if (const_name(lhs_fn) == const_name(rhs_fn)) {
|
||||
// injectivity transition
|
||||
expr new_type = binding_domain(whnf(infer_type(no_confusion)));
|
||||
|
@ -759,14 +759,14 @@ class inversion_tac {
|
|||
lean_assert(lhs_args.size() >= A_nparams);
|
||||
return unify_eqs(new_g, neqs - 1 + lhs_args.size() - A_nparams);
|
||||
} else {
|
||||
// conflict transition, eq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules.
|
||||
// conflict transition, Heq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules.
|
||||
expr val = lift_down(no_confusion);
|
||||
assign(g, val);
|
||||
return optional<goal>(); // goal has been solved
|
||||
}
|
||||
}
|
||||
if (is_local(rhs)) {
|
||||
// solution transition, eq is of the form t = y, where y is a local constant
|
||||
// solution transition, Heq is of the form t = y, where y is a local constant
|
||||
|
||||
// assume the current goal is of the form
|
||||
//
|
||||
|
@ -806,7 +806,7 @@ class inversion_tac {
|
|||
if (m_proof_irrel)
|
||||
tformer = Fun(rhs, deps_g_type);
|
||||
else
|
||||
tformer = Fun(rhs, Fun(eq, deps_g_type));
|
||||
tformer = Fun(rhs, Fun(Heq, deps_g_type));
|
||||
expr eq_rec = mk_constant(get_eq_rec_name(), {eq_rec_lvl1, eq_rec_lvl2});
|
||||
eq_rec = mk_app(eq_rec, A, lhs, tformer);
|
||||
buffer<expr> new_hyps;
|
||||
|
@ -815,7 +815,7 @@ class inversion_tac {
|
|||
store_rename(rhs, lhs);
|
||||
replace(m_imps, rhs, lhs);
|
||||
if (!m_proof_irrel) {
|
||||
new_type = abstract_local(new_type, eq);
|
||||
new_type = abstract_local(new_type, Heq);
|
||||
new_type = instantiate(new_type, mk_refl(m_tc, lhs));
|
||||
}
|
||||
buffer<expr> new_deps;
|
||||
|
@ -833,24 +833,49 @@ class inversion_tac {
|
|||
expr new_meta = mk_app(new_mvar, new_hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr eq_rec_minor = mk_app(new_mvar, non_deps);
|
||||
eq_rec = mk_app(eq_rec, eq_rec_minor, rhs, eq);
|
||||
eq_rec = mk_app(eq_rec, eq_rec_minor, rhs, Heq);
|
||||
expr val = mk_app(eq_rec, deps);
|
||||
assign(g, val);
|
||||
return unify_eqs(new_g, neqs-1);
|
||||
}
|
||||
} else if (is_local(lhs)) {
|
||||
// flip equation and reduce to previous case
|
||||
if (m_proof_irrel || !depends_on(g_type, hyps.back()))
|
||||
hyps.pop_back(); // remove processed equality
|
||||
expr symm_eq = mk_eq(rhs, lhs).first;
|
||||
expr new_type = mk_arrow(symm_eq, g_type);
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr eq_inv = mk_symm(m_tc, eq);
|
||||
expr val = mk_app(new_meta, eq_inv);
|
||||
assign(g, val);
|
||||
return unify_eqs(new_g, neqs);
|
||||
hyps.pop_back(); // remove processed equality
|
||||
if (!depends_on(g_type, Heq)) {
|
||||
expr new_type = mk_arrow(symm_eq, g_type);
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr Heq_inv = mk_symm(m_tc, Heq);
|
||||
expr val = mk_app(new_meta, Heq_inv);
|
||||
assign(g, val);
|
||||
return unify_eqs(new_g, neqs);
|
||||
} else {
|
||||
// Let C[Heq] be the original conclusion which depends on the equality eq being processed.
|
||||
expr new_Heq = update_mlocal(Heq, symm_eq);
|
||||
expr new_Heq_inv = mk_symm(m_tc, new_Heq);
|
||||
expr new_type = Pi(new_Heq, instantiate(abstract_local(g_type, Heq), new_Heq_inv));
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
// Then, we have
|
||||
// new_meta : Pi (new_Heq : rhs = lhs), C[symm new_Heq]
|
||||
expr Heq_inv = mk_symm(m_tc, Heq);
|
||||
expr val = mk_app(new_meta, Heq_inv);
|
||||
// val : C[symm (symm Heq)]
|
||||
// Remark: in proof irrelevant mode (symm (symm Heq)) is definitionally equal to Heq
|
||||
if (!m_proof_irrel) {
|
||||
expr C = Fun(Heq, g_type);
|
||||
level A_lvl = sort_level(m_tc.ensure_type(A).first);
|
||||
level g_lvl = sort_level(m_tc.ensure_type(g_type).first);
|
||||
expr elim_inv_inv = mk_constant(get_eq_elim_inv_inv_name(), {A_lvl, g_lvl});
|
||||
val = mk_app({elim_inv_inv, A, lhs, rhs, C, Heq, val});
|
||||
// val : C[Heq] as we wanted
|
||||
}
|
||||
assign(g, val);
|
||||
return unify_eqs(new_g, neqs);
|
||||
}
|
||||
}
|
||||
if (m_throw_tactic_exception) {
|
||||
throw tactic_exception([=](formatter const & fmt) {
|
||||
|
|
8
tests/lean/hott/481.hlean
Normal file
8
tests/lean/hott/481.hlean
Normal file
|
@ -0,0 +1,8 @@
|
|||
open equiv eq is_equiv is_trunc
|
||||
|
||||
definition foo {A B : Type} (f : A ≃ B) (f' : A → B)
|
||||
(H' : is_equiv f') (p : to_fun f = f') : p = p :=
|
||||
begin
|
||||
cases p,
|
||||
esimp
|
||||
end
|
Loading…
Reference in a new issue