diff --git a/hott/types/sigma.hlean b/hott/types/sigma.hlean index f7a78888b..374300482 100644 --- a/hott/types/sigma.hlean +++ b/hott/types/sigma.hlean @@ -17,14 +17,14 @@ namespace sigma {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a} -- sigma.eta is already used for the eta rule for strict equality - protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u, - eta ⟨u₁, u₂⟩ := idp + protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u + | eta ⟨u₁, u₂⟩ := idp - definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u, - eta2 ⟨u₁, u₂, u₃⟩ := idp + definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u + | eta2 ⟨u₁, u₂, u₃⟩ := idp - definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u, - eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp + definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u + | eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp definition dpair_eq_dpair (p : a = a') (q : p ▹ b = b') : ⟨a, b⟩ = ⟨a', b'⟩ := by cases p; cases q; apply idp @@ -68,12 +68,12 @@ namespace sigma /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ - definition sigma_eq_uncurried : Π (pq : Σ(p : pr1 u = pr1 v), p ▹ (pr2 u) = pr2 v), u = v, - sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ + definition sigma_eq_uncurried : Π (pq : Σ(p : pr1 u = pr1 v), p ▹ (pr2 u) = pr2 v), u = v + | sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ definition dpair_sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2), - sigma.mk (sigma_eq_uncurried pq)..1 (sigma_eq_uncurried pq)..2 = pq, - dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ + sigma.mk (sigma_eq_uncurried pq)..1 (sigma_eq_uncurried pq)..2 = pq + | dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ definition sigma_eq_pr1_uncurried (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2) : (sigma_eq_uncurried pq)..1 = pq.1 := diff --git a/library/data/fin.lean b/library/data/fin.lean index 05b9b039e..fea0d20aa 100644 --- a/library/data/fin.lean +++ b/library/data/fin.lean @@ -15,9 +15,9 @@ fz : Π n, fin (succ n), fs : Π {n}, fin n → fin (succ n) namespace fin - definition to_nat : Π {n}, fin n → nat, - @to_nat ⌞n+1⌟ (fz n) := zero, - @to_nat ⌞n+1⌟ (fs f) := succ (to_nat f) + definition to_nat : Π {n}, fin n → nat + | @to_nat ⌞n+1⌟ (fz n) := zero + | @to_nat ⌞n+1⌟ (fs f) := succ (to_nat f) theorem to_nat_fz (n : nat) : to_nat (fz n) = zero := rfl @@ -25,17 +25,17 @@ namespace fin theorem to_nat_fs {n : nat} (f : fin n) : to_nat (fs f) = succ (to_nat f) := rfl - theorem to_nat_lt : Π {n} (f : fin n), to_nat f < n, - to_nat_lt (fz n) := calc - to_nat (fz n) = 0 : rfl - ... < n+1 : succ_pos n, - to_nat_lt (@fs n f) := calc - to_nat (fs f) = (to_nat f)+1 : rfl - ... < n+1 : succ_lt_succ (to_nat_lt f) + theorem to_nat_lt : Π {n} (f : fin n), to_nat f < n + | to_nat_lt (fz n) := calc + to_nat (fz n) = 0 : rfl + ... < n+1 : succ_pos n + | to_nat_lt (@fs n f) := calc + to_nat (fs f) = (to_nat f)+1 : rfl + ... < n+1 : succ_lt_succ (to_nat_lt f) - definition lift : Π {n : nat}, fin n → Π (m : nat), fin (m + n), - @lift ⌞n+1⌟ (fz n) m := fz (m + n), - @lift ⌞n+1⌟ (@fs n f) m := fs (lift f m) + definition lift : Π {n : nat}, fin n → Π (m : nat), fin (m + n) + | @lift ⌞n+1⌟ (fz n) m := fz (m + n) + | @lift ⌞n+1⌟ (@fs n f) m := fs (lift f m) theorem lift_fz (n m : nat) : lift (fz n) m = fz (m + n) := rfl @@ -43,18 +43,18 @@ namespace fin theorem lift_fs {n : nat} (f : fin n) (m : nat) : lift (fs f) m = fs (lift f m) := rfl - theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m), - to_nat_lift (fz n) m := rfl, - to_nat_lift (@fs n f) m := calc + theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m) + | to_nat_lift (fz n) m := rfl + | to_nat_lift (@fs n f) m := calc to_nat (fs f) = (to_nat f) + 1 : rfl ... = (to_nat (lift f m)) + 1 : to_nat_lift f ... = to_nat (lift (fs f) m) : rfl - definition of_nat : Π (p : nat) (n : nat), p < n → fin n, - of_nat 0 0 h := absurd h (not_lt_zero zero), - of_nat 0 (n+1) h := fz n, - of_nat (p+1) 0 h := absurd h (not_lt_zero (succ p)), - of_nat (p+1) (n+1) h := fs (of_nat p n (lt_of_succ_lt_succ h)) + definition of_nat : Π (p : nat) (n : nat), p < n → fin n + | of_nat 0 0 h := absurd h (not_lt_zero zero) + | of_nat 0 (n+1) h := fz n + | of_nat (p+1) 0 h := absurd h (not_lt_zero (succ p)) + | of_nat (p+1) (n+1) h := fs (of_nat p n (lt_of_succ_lt_succ h)) theorem of_nat_zero_succ (n : nat) (h : 0 < n+1) : of_nat 0 (n+1) h = fz n := rfl @@ -63,19 +63,19 @@ namespace fin of_nat (p+1) (n+1) h = fs (of_nat p n (lt_of_succ_lt_succ h)) := rfl - theorem to_nat_of_nat : ∀ (p : nat) (n : nat) (h : p < n), to_nat (of_nat p n h) = p, - to_nat_of_nat 0 0 h := absurd h (not_lt_zero 0), - to_nat_of_nat 0 (n+1) h := rfl, - to_nat_of_nat (p+1) 0 h := absurd h (not_lt_zero (p+1)), - to_nat_of_nat (p+1) (n+1) h := calc - to_nat (of_nat (p+1) (n+1) h) - = succ (to_nat (of_nat p n _)) : rfl - ... = succ p : {to_nat_of_nat p n _} + theorem to_nat_of_nat : ∀ (p : nat) (n : nat) (h : p < n), to_nat (of_nat p n h) = p + | to_nat_of_nat 0 0 h := absurd h (not_lt_zero 0) + | to_nat_of_nat 0 (n+1) h := rfl + | to_nat_of_nat (p+1) 0 h := absurd h (not_lt_zero (p+1)) + | to_nat_of_nat (p+1) (n+1) h := calc + to_nat (of_nat (p+1) (n+1) h) + = succ (to_nat (of_nat p n _)) : rfl + ... = succ p : {to_nat_of_nat p n _} - theorem of_nat_to_nat : ∀ {n : nat} (f : fin n) (h : to_nat f < n), of_nat (to_nat f) n h = f, - of_nat_to_nat (fz n) h := rfl, - of_nat_to_nat (@fs n f) h := calc - of_nat (to_nat (fs f)) (succ n) h = fs (of_nat (to_nat f) n _) : rfl - ... = fs f : {of_nat_to_nat f _} + theorem of_nat_to_nat : ∀ {n : nat} (f : fin n) (h : to_nat f < n), of_nat (to_nat f) n h = f + | of_nat_to_nat (fz n) h := rfl + | of_nat_to_nat (@fs n f) h := calc + of_nat (to_nat (fs f)) (succ n) h = fs (of_nat (to_nat f) n _) : rfl + ... = fs f : {of_nat_to_nat f _} end fin diff --git a/library/data/int/div.lean b/library/data/int/div.lean index 9fb49809d..bf046c6eb 100644 --- a/library/data/int/div.lean +++ b/library/data/int/div.lean @@ -24,8 +24,8 @@ namespace int definition divide (a b : ℤ) : ℤ := sign b * (match a with - of_nat m := #nat m div (nat_abs b), - -[ m +1] := -[ (#nat m div (nat_abs b)) +1] + | of_nat m := #nat m div (nat_abs b) + | -[ m +1] := -[ (#nat m div (nat_abs b)) +1] end) notation a div b := divide a b diff --git a/library/data/list/basic.lean b/library/data/list/basic.lean index c3cbb2fae..2d4fef642 100644 --- a/library/data/list/basic.lean +++ b/library/data/list/basic.lean @@ -24,9 +24,9 @@ variable {T : Type} /- append -/ -definition append : list T → list T → list T, -append nil l := l, -append (h :: s) t := h :: (append s t) +definition append : list T → list T → list T +| append nil l := l +| append (h :: s) t := h :: (append s t) notation l₁ ++ l₂ := append l₁ l₂ @@ -34,66 +34,66 @@ theorem append_nil_left (t : list T) : nil ++ t = t theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t) -theorem append_nil_right : ∀ (t : list T), t ++ nil = t, -append_nil_right nil := rfl, -append_nil_right (a :: l) := calc +theorem append_nil_right : ∀ (t : list T), t ++ nil = t +| append_nil_right nil := rfl +| append_nil_right (a :: l) := calc (a :: l) ++ nil = a :: (l ++ nil) : rfl ... = a :: l : append_nil_right l -theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u), -append.assoc nil t u := rfl, -append.assoc (a :: l) t u := calc +theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u) +| append.assoc nil t u := rfl +| append.assoc (a :: l) t u := calc (a :: l) ++ t ++ u = a :: (l ++ t ++ u) : rfl ... = a :: (l ++ (t ++ u)) : append.assoc ... = (a :: l) ++ (t ++ u) : rfl /- length -/ -definition length : list T → nat, -length nil := 0, -length (a :: l) := length l + 1 +definition length : list T → nat +| length nil := 0 +| length (a :: l) := length l + 1 theorem length_nil : length (@nil T) = 0 theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1 -theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t, -length_append nil t := calc - length (nil ++ t) = length t : rfl - ... = length nil + length t : zero_add, -length_append (a :: s) t := calc - length (a :: s ++ t) = length (s ++ t) + 1 : rfl - ... = length s + length t + 1 : length_append - ... = (length s + 1) + length t : add.succ_left - ... = length (a :: s) + length t : rfl +theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t +| length_append nil t := calc + length (nil ++ t) = length t : rfl + ... = length nil + length t : zero_add +| length_append (a :: s) t := calc + length (a :: s ++ t) = length (s ++ t) + 1 : rfl + ... = length s + length t + 1 : length_append + ... = (length s + 1) + length t : add.succ_left + ... = length (a :: s) + length t : rfl -- add_rewrite length_nil length_cons /- concat -/ -definition concat : Π (x : T), list T → list T, -concat a nil := [a], -concat a (b :: l) := b :: concat a l +definition concat : Π (x : T), list T → list T +| concat a nil := [a] +| concat a (b :: l) := b :: concat a l theorem concat_nil (x : T) : concat x nil = [x] theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) -theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a], -concat_eq_append nil := rfl, -concat_eq_append (b :: l) := calc - concat a (b :: l) = b :: (concat a l) : rfl - ... = b :: (l ++ [a]) : concat_eq_append - ... = (b :: l) ++ [a] : rfl +theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a] +| concat_eq_append nil := rfl +| concat_eq_append (b :: l) := calc + concat a (b :: l) = b :: (concat a l) : rfl + ... = b :: (l ++ [a]) : concat_eq_append + ... = (b :: l) ++ [a] : rfl -- add_rewrite append_nil append_cons /- reverse -/ -definition reverse : list T → list T, -reverse nil := nil, -reverse (a :: l) := concat a (reverse l) +definition reverse : list T → list T +| reverse nil := nil +| reverse (a :: l) := concat a (reverse l) theorem reverse_nil : reverse (@nil T) = nil @@ -101,27 +101,27 @@ theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l theorem reverse_singleton (x : T) : reverse [x] = [x] -theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s), -reverse_append nil t2 := calc - reverse (nil ++ t2) = reverse t2 : rfl - ... = (reverse t2) ++ nil : append_nil_right - ... = (reverse t2) ++ (reverse nil) : {reverse_nil⁻¹}, -reverse_append (a2 :: s2) t2 := calc - reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl - ... = concat a2 (reverse t2 ++ reverse s2) : reverse_append - ... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append - ... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc - ... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append - ... = reverse t2 ++ reverse (a2 :: s2) : rfl +theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s) +| reverse_append nil t2 := calc + reverse (nil ++ t2) = reverse t2 : rfl + ... = (reverse t2) ++ nil : append_nil_right + ... = (reverse t2) ++ (reverse nil) : {reverse_nil⁻¹} +| reverse_append (a2 :: s2) t2 := calc + reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl + ... = concat a2 (reverse t2 ++ reverse s2) : reverse_append + ... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append + ... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc + ... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append + ... = reverse t2 ++ reverse (a2 :: s2) : rfl -theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l, -reverse_reverse nil := rfl, -reverse_reverse (a :: l) := calc - reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl - ... = reverse (reverse l ++ [a]) : concat_eq_append - ... = reverse [a] ++ reverse (reverse l) : reverse_append - ... = reverse [a] ++ l : reverse_reverse - ... = a :: l : rfl +theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l +| reverse_reverse nil := rfl +| reverse_reverse (a :: l) := calc + reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl + ... = reverse (reverse l ++ [a]) : concat_eq_append + ... = reverse [a] ++ reverse (reverse l) : reverse_append + ... = reverse [a] ++ l : reverse_reverse + ... = a :: l : rfl theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) := calc @@ -130,9 +130,9 @@ calc /- head and tail -/ -definition head [h : inhabited T] : list T → T, -head nil := arbitrary T, -head (a :: l) := a +definition head [h : inhabited T] : list T → T +| head nil := arbitrary T +| head (a :: l) := a theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a @@ -145,9 +145,9 @@ list.cases_on s ... = x : head_cons ... = head (x::s) : rfl) -definition tail : list T → list T, -tail nil := nil, -tail (a :: l) := l +definition tail : list T → list T +| tail nil := nil +| tail (a :: l) := l theorem tail_nil : tail (@nil T) = nil @@ -160,9 +160,9 @@ list.cases_on l /- list membership -/ -definition mem : T → list T → Prop, -mem a nil := false, -mem a (b :: l) := a = b ∨ mem a l +definition mem : T → list T → Prop +| mem a nil := false +| mem a (b :: l) := a = b ∨ mem a l notation e ∈ s := mem e s @@ -246,9 +246,9 @@ section variable [H : decidable_eq T] include H -definition find : T → list T → nat, -find a nil := 0, -find a (b :: l) := if a = b then 0 else succ (find a l) +definition find : T → list T → nat +| find a nil := 0 +| find a (b :: l) := if a = b then 0 else succ (find a l) theorem find_nil (x : T) : find x nil = 0 @@ -271,10 +271,10 @@ end /- nth element -/ -definition nth [h : inhabited T] : list T → nat → T, -nth nil n := arbitrary T, -nth (a :: l) 0 := a, -nth (a :: l) (n+1) := nth l n +definition nth [h : inhabited T] : list T → nat → T +| nth nil n := arbitrary T +| nth (a :: l) 0 := a +| nth (a :: l) (n+1) := nth l n theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a diff --git a/library/data/subtype.lean b/library/data/subtype.lean index 2311a4b26..314a76deb 100644 --- a/library/data/subtype.lean +++ b/library/data/subtype.lean @@ -13,7 +13,7 @@ set_option structure.proj_mk_thm true structure subtype {A : Type} (P : A → Prop) := tag :: (elt_of : A) (has_property : P elt_of) -notation `{` binders:55 `|` r:(scoped:1 P, subtype P) `}` := r +notation `{` binders `|` r:(scoped:1 P, subtype P) `}` := r namespace subtype variables {A : Type} {P : A → Prop} diff --git a/library/data/sum.lean b/library/data/sum.lean index 17488a057..7a22cbdf7 100644 --- a/library/data/sum.lean +++ b/library/data/sum.lean @@ -39,17 +39,17 @@ namespace sum protected definition is_inhabited_right [instance] [h : inhabited B] : inhabited (A + B) := inhabited.mk (inr (default B)) - protected definition has_decidable_eq [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : ∀ s₁ s₂ : A + B, decidable (s₁ = s₂), - has_decidable_eq (inl a₁) (inl a₂) := + protected definition has_decidable_eq [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : ∀ s₁ s₂ : A + B, decidable (s₁ = s₂) + | has_decidable_eq (inl a₁) (inl a₂) := match h₁ a₁ a₂ with - decidable.inl hp := decidable.inl (hp ▸ rfl), - decidable.inr hn := decidable.inr (λ he, absurd (inl_inj he) hn) - end, - has_decidable_eq (inl a₁) (inr b₂) := decidable.inr (λ e, sum.no_confusion e), - has_decidable_eq (inr b₁) (inl a₂) := decidable.inr (λ e, sum.no_confusion e), - has_decidable_eq (inr b₁) (inr b₂) := + | decidable.inl hp := decidable.inl (hp ▸ rfl) + | decidable.inr hn := decidable.inr (λ he, absurd (inl_inj he) hn) + end + | has_decidable_eq (inl a₁) (inr b₂) := decidable.inr (λ e, sum.no_confusion e) + | has_decidable_eq (inr b₁) (inl a₂) := decidable.inr (λ e, sum.no_confusion e) + | has_decidable_eq (inr b₁) (inr b₂) := match h₂ b₁ b₂ with - decidable.inl hp := decidable.inl (hp ▸ rfl), - decidable.inr hn := decidable.inr (λ he, absurd (inr_inj he) hn) + | decidable.inl hp := decidable.inl (hp ▸ rfl) + | decidable.inr hn := decidable.inr (λ he, absurd (inr_inj he) hn) end end sum diff --git a/library/data/vector.lean b/library/data/vector.lean index 37249bbda..8fe141fcc 100644 --- a/library/data/vector.lean +++ b/library/data/vector.lean @@ -18,18 +18,18 @@ namespace vector variables {A B C : Type} - protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n), - is_inhabited 0 := inhabited.mk nil, - is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) + protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n) + | is_inhabited 0 := inhabited.mk nil + | is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) - theorem vector0_eq_nil : ∀ (v : vector A 0), v = nil, - vector0_eq_nil nil := rfl + theorem vector0_eq_nil : ∀ (v : vector A 0), v = nil + | vector0_eq_nil nil := rfl - definition head : Π {n : nat}, vector A (succ n) → A, - head (a::v) := a + definition head : Π {n : nat}, vector A (succ n) → A + | head (a::v) := a - definition tail : Π {n : nat}, vector A (succ n) → vector A n, - tail (a::v) := v + definition tail : Π {n : nat}, vector A (succ n) → vector A n + | tail (a::v) := v theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := rfl @@ -37,12 +37,12 @@ namespace vector theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := rfl - theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v, - eta (a::v) := rfl + theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v + | eta (a::v) := rfl - definition last : Π {n : nat}, vector A (succ n) → A, - last (a::nil) := a, - last (a::v) := last v + definition last : Π {n : nat}, vector A (succ n) → A + | last (a::nil) := a + | last (a::v) := last v theorem last_singleton (a : A) : last (a :: nil) = a := rfl @@ -50,20 +50,20 @@ namespace vector theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v := rfl - definition const : Π (n : nat), A → vector A n, - const 0 a := nil, - const (succ n) a := a :: const n a + definition const : Π (n : nat), A → vector A n + | const 0 a := nil + | const (succ n) a := a :: const n a theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a := rfl - theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a, - last_const 0 a := rfl, - last_const (succ n) a := last_const n a + theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a + | last_const 0 a := rfl + | last_const (succ n) a := last_const n a - definition map (f : A → B) : Π {n : nat}, vector A n → vector B n, - map nil := nil, - map (a::v) := f a :: map v + definition map (f : A → B) : Π {n : nat}, vector A n → vector B n + | map nil := nil + | map (a::v) := f a :: map v theorem map_nil (f : A → B) : map f nil = nil := rfl @@ -71,9 +71,9 @@ namespace vector theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := rfl - definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n, - map2 nil nil := nil, - map2 (a::va) (b::vb) := f a b :: map2 va vb + definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n + | map2 nil nil := nil + | map2 (a::va) (b::vb) := f a b :: map2 va vb theorem map2_nil (f : A → B → C) : map2 f nil nil = nil := rfl @@ -83,9 +83,9 @@ namespace vector rfl -- Remark: why do we need to provide indices? - definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m), - @append 0 m nil w := w, - @append (succ n) m (a::v) w := a :: (append v w) + definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m) + | @append 0 m nil w := w + | @append (succ n) m (a::v) w := a :: (append v w) theorem append_nil {n : nat} (v : vector A n) : append nil v = v := rfl @@ -94,9 +94,9 @@ namespace vector append (h::t) v = h :: (append t v) := rfl - definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n, - unzip nil := (nil, nil), - unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) + definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n + | unzip nil := (nil, nil) + | unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) theorem unzip_nil : unzip (@nil (A × B)) = (nil, nil) := rfl @@ -105,9 +105,9 @@ namespace vector unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) := rfl - definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n, - zip nil nil := nil, - zip (a::va) (b::vb) := ((a, b) :: zip va vb) + definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n + | zip nil nil := nil + | zip (a::va) (b::vb) := ((a, b) :: zip va vb) theorem zip_nil_nil : zip (@nil A) (@nil B) = nil := rfl @@ -116,26 +116,26 @@ namespace vector zip (a::va) (b::vb) = ((a, b) :: zip va vb) := rfl - theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂), - @unzip_zip 0 nil nil := rfl, - @unzip_zip (succ n) (a::va) (b::vb) := calc + theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) + | @unzip_zip 0 nil nil := rfl + | @unzip_zip (succ n) (a::va) (b::vb) := calc unzip (zip (a :: va) (b :: vb)) = (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl ... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : {unzip_zip va vb} ... = (a :: va, b :: vb) : rfl - theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v, - @zip_unzip 0 nil := rfl, - @zip_unzip (succ n) ((a, b) :: v) := calc + theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v + | @zip_unzip 0 nil := rfl + | @zip_unzip (succ n) ((a, b) :: v) := calc zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v))) = (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl ... = (a, b) :: v : {zip_unzip v} /- Concat -/ - definition concat : Π {n : nat}, vector A n → A → vector A (succ n), - concat nil a := a :: nil, - concat (b::v) a := b :: concat v a + definition concat : Π {n : nat}, vector A n → A → vector A (succ n) + | concat nil a := a :: nil + | concat (b::v) a := b :: concat v a theorem concat_nil (a : A) : concat nil a = a :: nil := rfl @@ -143,9 +143,9 @@ namespace vector theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a := rfl - theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a, - @last_concat 0 nil a := rfl, - @last_concat (succ n) (b::v) a := calc + theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a + | @last_concat 0 nil a := rfl + | @last_concat (succ n) (b::v) a := calc last (concat (b::v) a) = last (concat v a) : rfl ... = a : last_concat v a end vector diff --git a/library/init/nat.lean b/library/init/nat.lean index e6a5ef852..62c3a78dc 100644 --- a/library/init/nat.lean +++ b/library/init/nat.lean @@ -29,14 +29,14 @@ namespace nat protected definition is_inhabited [instance] : inhabited nat := inhabited.mk zero - protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y), - has_decidable_eq zero zero := inl rfl, - has_decidable_eq (succ x) zero := inr (λ h, nat.no_confusion h), - has_decidable_eq zero (succ y) := inr (λ h, nat.no_confusion h), - has_decidable_eq (succ x) (succ y) := - if H : x = y - then inl (eq.rec_on H rfl) - else inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H)) + protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y) + | has_decidable_eq zero zero := inl rfl + | has_decidable_eq (succ x) zero := inr (λ h, nat.no_confusion h) + | has_decidable_eq zero (succ y) := inr (λ h, nat.no_confusion h) + | has_decidable_eq (succ x) (succ y) := + if H : x = y + then inl (eq.rec_on H rfl) + else inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H)) -- less-than is well-founded definition lt.wf [instance] : well_founded lt := diff --git a/library/init/tactic.lean b/library/init/tactic.lean index 835db2507..ad45956ac 100644 --- a/library/init/tactic.lean +++ b/library/init/tactic.lean @@ -94,7 +94,7 @@ notation `reverts` `(` l:(foldr `,` (h t, expr_list.cons h t) expr_list.nil) `)` opaque definition assert_hypothesis (id : expr) (e : expr) : tactic := builtin infixl `;`:15 := and_then -notation `[` h:10 `|`:10 r:(foldl:10 `|` (e r, or_else r e) h) `]` := r +notation `[` h `|` r:(foldl `|` (e r, or_else r e) h) `]` := r definition try (t : tactic) : tactic := [t | id] definition repeat1 (t : tactic) : tactic := t ; repeat t diff --git a/src/frontends/lean/decl_cmds.cpp b/src/frontends/lean/decl_cmds.cpp index 4587b6028..15f90426d 100644 --- a/src/frontends/lean/decl_cmds.cpp +++ b/src/frontends/lean/decl_cmds.cpp @@ -440,8 +440,8 @@ static void erase_local_binder_info(buffer & ps) { p = update_local(p, binder_info()); } -static bool is_curr_with_or_comma(parser & p) { - return p.curr_is_token(get_with_tk()) || p.curr_is_token(get_comma_tk()); +static bool is_curr_with_or_comma_or_bar(parser & p) { + return p.curr_is_token(get_with_tk()) || p.curr_is_token(get_comma_tk()) || p.curr_is_token(get_bar_tk()); } /** @@ -515,6 +515,16 @@ static void throw_invalid_equation_lhs(name const & n, pos_info const & p) { << n << "' in the left-hand-side does not correspond to function(s) being defined", p); } +static bool is_eqn_prefix(parser & p) { + return p.curr_is_token(get_bar_tk()) || p.curr_is_token(get_comma_tk()); +} + +static void check_eqn_prefix(parser & p) { + if (!is_eqn_prefix(p)) + throw parser_error("invalid declaration, ',' or '|' expected", p.pos()); + p.next(); +} + expr parse_equations(parser & p, name const & n, expr const & type, buffer & auxs, optional const & lenv, buffer const & ps, pos_info const & def_pos) { @@ -524,7 +534,7 @@ expr parse_equations(parser & p, name const & n, expr const & type, buffer parser::local_scope scope1(p, lenv); for (expr const & param : ps) p.add_local(param); - lean_assert(is_curr_with_or_comma(p)); + lean_assert(is_curr_with_or_comma_or_bar(p)); fns.push_back(mk_local(n, type)); if (p.curr_is_token(get_with_tk())) { while (p.curr_is_token(get_with_tk())) { @@ -538,7 +548,7 @@ expr parse_equations(parser & p, name const & n, expr const & type, buffer fns.push_back(g); } } - p.check_token_next(get_comma_tk(), "invalid declaration, ',' expected"); + check_eqn_prefix(p); for (expr const & fn : fns) p.add_local(fn); while (true) { @@ -574,7 +584,7 @@ expr parse_equations(parser & p, name const & n, expr const & type, buffer expr rhs = p.parse_expr(); eqns.push_back(Fun(fns, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p))); } - if (!p.curr_is_token(get_comma_tk())) + if (!is_eqn_prefix(p)) break; p.next(); } @@ -594,6 +604,8 @@ expr parse_equations(parser & p, name const & n, expr const & type, buffer expr parse_match(parser & p, unsigned, expr const *, pos_info const & pos) { expr t = p.parse_expr(); p.check_token_next(get_with_tk(), "invalid 'match' expression, 'with' expected"); + if (is_eqn_prefix(p)) + p.next(); buffer eqns; expr fn = mk_local(p.mk_fresh_name(), "match", mk_expr_placeholder(), binder_info()); while (true) { @@ -621,7 +633,7 @@ expr parse_match(parser & p, unsigned, expr const *, pos_info const & pos) { expr rhs = p.parse_expr(); eqns.push_back(Fun(fn, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p))); } - if (!p.curr_is_token(get_comma_tk())) + if (!is_eqn_prefix(p)) break; p.next(); } @@ -685,7 +697,7 @@ class definition_cmd_fn { m_p.next(); auto pos = m_p.pos(); m_type = m_p.parse_expr(); - if (is_curr_with_or_comma(m_p)) { + if (is_curr_with_or_comma_or_bar(m_p)) { m_value = parse_equations(m_p, m_name, m_type, m_aux_decls, optional(), buffer(), m_pos); } else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) { @@ -704,7 +716,7 @@ class definition_cmd_fn { if (m_p.curr_is_token(get_colon_tk())) { m_p.next(); m_type = m_p.parse_scoped_expr(ps, *lenv); - if (is_curr_with_or_comma(m_p)) { + if (is_curr_with_or_comma_or_bar(m_p)) { m_value = parse_equations(m_p, m_name, m_type, m_aux_decls, lenv, ps, m_pos); } else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) { check_end_of_theorem(m_p); diff --git a/tests/lean/bad_eqns.lean b/tests/lean/bad_eqns.lean index 46120bb71..24d97036a 100644 --- a/tests/lean/bad_eqns.lean +++ b/tests/lean/bad_eqns.lean @@ -1,15 +1,15 @@ open nat -definition foo : nat → nat, -foo (0 + x) := x +definition foo : nat → nat +| foo (0 + x) := x -definition foo : nat → nat → nat, -foo 0 _ := 0, -foo x ⌞y⌟ := x +definition foo : nat → nat → nat +| foo 0 _ := 0 +| foo x ⌞y⌟ := x -definition foo : nat → nat → nat, -foo 0 _ := 0, -foo ⌞x⌟ x := x +definition foo : nat → nat → nat +| foo 0 _ := 0 +| foo ⌞x⌟ x := x inductive tree (A : Type) := node : tree_list A → tree A, @@ -19,18 +19,18 @@ nil {} : tree_list A, cons : tree A → tree_list A → tree_list A definition is_leaf {A : Type} : tree A → bool -with is_leaf_aux : tree_list A → bool, -is_leaf (tree.node _) := bool.ff, -is_leaf (tree.leaf _) := bool.tt, -is_leaf_aux tree_list.nil := bool.ff, -is_leaf_aux (tree_list.cons _ _) := bool.ff +with is_leaf_aux : tree_list A → bool +| is_leaf (tree.node _) := bool.ff +| is_leaf (tree.leaf _) := bool.tt +| is_leaf_aux tree_list.nil := bool.ff +| is_leaf_aux (tree_list.cons _ _) := bool.ff -definition foo : nat → nat, -foo 0 := 0, -foo (x+1) := let y := x + 2 in y * y +definition foo : nat → nat +| foo 0 := 0 +| foo (x+1) := let y := x + 2 in y * y example : foo 5 = 36 := rfl -definition boo : nat → nat, -boo (x + 1) := boo (x + 2), -boo 0 := 0 +definition boo : nat → nat +| boo (x + 1) := boo (x + 2) +| boo 0 := 0 diff --git a/tests/lean/bad_eqns.lean.expected.out b/tests/lean/bad_eqns.lean.expected.out index 5fc82a487..36fb4ce97 100644 --- a/tests/lean/bad_eqns.lean.expected.out +++ b/tests/lean/bad_eqns.lean.expected.out @@ -1,8 +1,8 @@ -bad_eqns.lean:4:0: error: invalid argument, it is not a constructor, variable, nor it is marked as an inaccessible pattern +bad_eqns.lean:4:2: error: invalid argument, it is not a constructor, variable, nor it is marked as an inaccessible pattern 0 + x in the following equation left-hand-side foo (0 + x) -bad_eqns.lean:8:0: error: invalid equation left-hand-side, variable 'y' only occurs in inaccessible terms in the following equation left-hand-side +bad_eqns.lean:8:2: error: invalid equation left-hand-side, variable 'y' only occurs in inaccessible terms in the following equation left-hand-side foo x y bad_eqns.lean:10:11: error: invalid recursive equations for 'foo', inconsistent use of inaccessible term annotation, in some equations a pattern is a constructor, and in another it is an inaccessible term bad_eqns.lean:21:11: error: mutual recursion is not needed when defining non-recursive functions diff --git a/tests/lean/hott/def_bug1.hlean b/tests/lean/hott/def_bug1.hlean index 90602b41c..f37e9c921 100644 --- a/tests/lean/hott/def_bug1.hlean +++ b/tests/lean/hott/def_bug1.hlean @@ -2,13 +2,13 @@ open eq eq.ops variable {A : Type} -definition trans : Π {x y z : A} (p : x = y) (q : y = z), x = z, -trans (refl a) (refl a) := refl a +definition trans : Π {x y z : A} (p : x = y) (q : y = z), x = z +| trans (refl a) (refl a) := refl a set_option pp.purify_locals false -definition con_inv_cancel_left : Π {x y z : A} (p : x = y) (q : x = z), p ⬝ (p⁻¹ ⬝ q) = q, -con_inv_cancel_left (refl a) (refl a) := refl (refl a) +definition con_inv_cancel_left : Π {x y z : A} (p : x = y) (q : x = z), p ⬝ (p⁻¹ ⬝ q) = q +| con_inv_cancel_left (refl a) (refl a) := refl (refl a) -definition inv_con_cancel_left : Π {x y z : A} (p : x = y) (q : y = z), p⁻¹ ⬝ (p ⬝ q) = q, -inv_con_cancel_left (refl a) (refl a) := refl (refl a) +definition inv_con_cancel_left : Π {x y z : A} (p : x = y) (q : y = z), p⁻¹ ⬝ (p ⬝ q) = q +| inv_con_cancel_left (refl a) (refl a) := refl (refl a) diff --git a/tests/lean/hott/eq1.hlean b/tests/lean/hott/eq1.hlean index 420bb851e..db5913e40 100644 --- a/tests/lean/hott/eq1.hlean +++ b/tests/lean/hott/eq1.hlean @@ -6,8 +6,8 @@ cons : Π {n}, A → vector A n → vector A (succ n) infixr `::` := vector.cons -definition swap {A : Type} : Π {n}, vector A (succ (succ n)) → vector A (succ (succ n)), -swap (a :: b :: vs) := b :: a :: vs +definition swap {A : Type} : Π {n}, vector A (succ (succ n)) → vector A (succ (succ n)) +| swap (a :: b :: vs) := b :: a :: vs -- Remark: in the current approach for HoTT, the equation -- swap (a :: b :: v) = b :: a :: v diff --git a/tests/lean/nonexhaustive.lean b/tests/lean/nonexhaustive.lean index 2c8f0cc77..9a83af941 100644 --- a/tests/lean/nonexhaustive.lean +++ b/tests/lean/nonexhaustive.lean @@ -3,12 +3,12 @@ open nat vector variable {A : Type} -definition foo : Π {n : nat}, vector A n → nat, -foo nil := 0, -foo (a :: b :: v) := 0 +definition foo : Π {n : nat}, vector A n → nat +| foo nil := 0 +| foo (a :: b :: v) := 0 set_option pp.implicit false -definition foo : Π {n : nat}, vector A n → nat, -foo nil := 0, -foo (a :: b :: v) := 0 +definition foo : Π {n : nat}, vector A n → nat +| foo nil := 0 +| foo (a :: b :: v) := 0 diff --git a/tests/lean/place_eqn.lean b/tests/lean/place_eqn.lean index 481ae9dce..40bcc3969 100644 --- a/tests/lean/place_eqn.lean +++ b/tests/lean/place_eqn.lean @@ -1,5 +1,5 @@ open nat -definition foo : nat → nat, -foo zero := _, -foo (succ a) := _ +definition foo : nat → nat +| foo zero := _ +| foo (succ a) := _ diff --git a/tests/lean/place_eqn.lean.expected.out b/tests/lean/place_eqn.lean.expected.out index 720029ccb..8d45277e2 100644 --- a/tests/lean/place_eqn.lean.expected.out +++ b/tests/lean/place_eqn.lean.expected.out @@ -1,7 +1,7 @@ -place_eqn.lean:4:16: error: don't know how to synthesize placeholder +place_eqn.lean:4:18: error: don't know how to synthesize placeholder foo : ℕ → ℕ ⊢ ℕ -place_eqn.lean:5:16: error: don't know how to synthesize placeholder +place_eqn.lean:5:18: error: don't know how to synthesize placeholder foo : ℕ → ℕ, a : ℕ ⊢ ℕ diff --git a/tests/lean/run/assert_tac2.lean b/tests/lean/run/assert_tac2.lean index d4af16165..f643eadc9 100644 --- a/tests/lean/run/assert_tac2.lean +++ b/tests/lean/run/assert_tac2.lean @@ -3,12 +3,12 @@ open nat eq.ops theorem lcm_dvd {m n k : nat} (H1 : (m | k)) (H2 : (n | k)) : (lcm m n | k) := match eq_zero_or_pos k with - @or.inl _ _ kzero := +| @or.inl _ _ kzero := begin rewrite kzero, apply dvd_zero - end, - @or.inr _ _ kpos := + end +| @or.inr _ _ kpos := obtain (p : nat) (km : k = m * p), from exists_eq_mul_right_of_dvd H1, obtain (q : nat) (kn : k = n * q), from exists_eq_mul_right_of_dvd H2, begin diff --git a/tests/lean/run/eq1.lean b/tests/lean/run/eq1.lean index 5ba3494ce..8f278dd5a 100644 --- a/tests/lean/run/eq1.lean +++ b/tests/lean/run/eq1.lean @@ -3,14 +3,14 @@ monday, tuesday, wednesday, thursday, friday, saturday, sunday open day -definition next_weekday : day → day, -next_weekday monday := tuesday, -next_weekday tuesday := wednesday, -next_weekday wednesday := thursday, -next_weekday thursday := friday, -next_weekday friday := monday, -next_weekday saturday := monday, -next_weekday sunday := monday +definition next_weekday : day → day +| next_weekday monday := tuesday +| next_weekday tuesday := wednesday +| next_weekday wednesday := thursday +| next_weekday thursday := friday +| next_weekday friday := monday +| next_weekday saturday := monday +| next_weekday sunday := monday example : next_weekday (next_weekday monday) = wednesday := rfl diff --git a/tests/lean/run/eq10.lean b/tests/lean/run/eq10.lean index 2bd4bf768..f87832c01 100644 --- a/tests/lean/run/eq10.lean +++ b/tests/lean/run/eq10.lean @@ -9,13 +9,13 @@ allf : (nat → formula) → formula namespace formula definition implies (a b : Prop) : Prop := a → b - definition denote : formula → Prop, - denote (eqf n1 n2) := n1 = n2, - denote (andf f1 f2) := denote f1 ∧ denote f2, - denote (impf f1 f2) := implies (denote f1) (denote f2), - denote (orf f1 f2) := denote f1 ∨ denote f2, - denote (notf f) := ¬ denote f, - denote (allf f) := ∀ n : nat, denote (f n) + definition denote : formula → Prop + | denote (eqf n1 n2) := n1 = n2 + | denote (andf f1 f2) := denote f1 ∧ denote f2 + | denote (impf f1 f2) := implies (denote f1) (denote f2) + | denote (orf f1 f2) := denote f1 ∨ denote f2 + | denote (notf f) := ¬ denote f + | denote (allf f) := ∀ n : nat, denote (f n) theorem denote_eqf (n1 n2 : nat) : denote (eqf n1 n2) = (n1 = n2) := rfl diff --git a/tests/lean/run/eq11.lean b/tests/lean/run/eq11.lean index c1f123f56..a15ab186f 100644 --- a/tests/lean/run/eq11.lean +++ b/tests/lean/run/eq11.lean @@ -3,12 +3,12 @@ monday, tuesday, wednesday, thursday, friday, saturday, sunday open day -definition next_weekday : day → day, -next_weekday monday := tuesday, -next_weekday tuesday := wednesday, -next_weekday wednesday := thursday, -next_weekday thursday := friday, -next_weekday _ := monday +definition next_weekday : day → day +| next_weekday monday := tuesday +| next_weekday tuesday := wednesday +| next_weekday wednesday := thursday +| next_weekday thursday := friday +| next_weekday _ := monday theorem next_weekday_monday : next_weekday monday = tuesday := rfl theorem next_weekday_tuesday : next_weekday tuesday = wednesday := rfl diff --git a/tests/lean/run/eq12.lean b/tests/lean/run/eq12.lean index 1b6310b51..5bc9830f6 100644 --- a/tests/lean/run/eq12.lean +++ b/tests/lean/run/eq12.lean @@ -1,10 +1,10 @@ open nat bool inhabited -definition diag : bool → bool → bool → nat, -diag _ tt ff := 1, -diag ff _ tt := 2, -diag tt ff _ := 3, -diag _ _ _ := arbitrary nat +definition diag : bool → bool → bool → nat +| diag _ tt ff := 1 +| diag ff _ tt := 2 +| diag tt ff _ := 3 +| diag _ _ _ := arbitrary nat theorem diag1 (a : bool) : diag a tt ff = 1 := bool.cases_on a rfl rfl diff --git a/tests/lean/run/eq13.lean b/tests/lean/run/eq13.lean index 92f25ee9d..d9f676e3b 100644 --- a/tests/lean/run/eq13.lean +++ b/tests/lean/run/eq13.lean @@ -1,13 +1,13 @@ open nat -definition f : nat → nat → nat, -f _ 0 := 0, -f 0 _ := 1, -f _ _ := arbitrary nat +definition f : nat → nat → nat +| f _ 0 := 0 +| f 0 _ := 1 +| f _ _ := arbitrary nat -theorem f_zero_right : ∀ a, f a 0 = 0, -f_zero_right 0 := rfl, -f_zero_right (succ _) := rfl +theorem f_zero_right : ∀ a, f a 0 = 0 +| f_zero_right 0 := rfl +| f_zero_right (succ _) := rfl theorem f_zero_succ (a : nat) : f 0 (a+1) = 1 := rfl diff --git a/tests/lean/run/eq14.lean b/tests/lean/run/eq14.lean index 11552c6a3..9ec62b385 100644 --- a/tests/lean/run/eq14.lean +++ b/tests/lean/run/eq14.lean @@ -1,13 +1,13 @@ open nat decidable -definition has_decidable_eq : ∀ a b : nat, decidable (a = b), -has_decidable_eq 0 0 := inl rfl, -has_decidable_eq (a+1) 0 := inr (λ h, nat.no_confusion h), -has_decidable_eq 0 (b+1) := inr (λ h, nat.no_confusion h), -has_decidable_eq (a+1) (b+1) := - if H : a = b - then inl (eq.rec_on H rfl) - else inr (λ h : a+1 = b+1, nat.no_confusion h (λ e : a = b, absurd e H)) +definition has_decidable_eq : ∀ a b : nat, decidable (a = b) +| has_decidable_eq 0 0 := inl rfl +| has_decidable_eq (a+1) 0 := inr (λ h, nat.no_confusion h) +| has_decidable_eq 0 (b+1) := inr (λ h, nat.no_confusion h) +| has_decidable_eq (a+1) (b+1) := + if H : a = b + then inl (eq.rec_on H rfl) + else inr (λ h : a+1 = b+1, nat.no_confusion h (λ e : a = b, absurd e H)) check has_decidable_eq print definition has_decidable_eq diff --git a/tests/lean/run/eq15.lean b/tests/lean/run/eq15.lean index 10671d8b2..7e695acf9 100644 --- a/tests/lean/run/eq15.lean +++ b/tests/lean/run/eq15.lean @@ -3,9 +3,9 @@ open list set_option pp.implicit true -definition append : Π {A : Type}, list A → list A → list A, -append nil l := l, -append (h :: t) l := h :: (append t l) +definition append : Π {A : Type}, list A → list A → list A +| append nil l := l +| append (h :: t) l := h :: (append t l) theorem append_nil {A : Type} (l : list A) : append nil l = l := rfl diff --git a/tests/lean/run/eq16.lean b/tests/lean/run/eq16.lean index 284f773ae..23e68b163 100644 --- a/tests/lean/run/eq16.lean +++ b/tests/lean/run/eq16.lean @@ -4,9 +4,9 @@ open list variable {A : Type} set_option pp.implicit true -definition append : list A → list A → list A, -append nil l := l, -append (h :: t) l := h :: (append t l) +definition append : list A → list A → list A +| append nil l := l +| append (h :: t) l := h :: (append t l) theorem append_nil (l : list A) : append nil l = l := rfl diff --git a/tests/lean/run/eq17.lean b/tests/lean/run/eq17.lean index db084c752..c704120dc 100644 --- a/tests/lean/run/eq17.lean +++ b/tests/lean/run/eq17.lean @@ -1,5 +1,5 @@ open nat -definition lt_of_succ : ∀ {a b : nat}, succ a < b → a < b, -lt_of_succ (lt.base (succ a)) := lt.trans (lt.base a) (lt.base (succ a)), -lt_of_succ (lt.step h) := lt.step (lt_of_succ h) +definition lt_of_succ : ∀ {a b : nat}, succ a < b → a < b +| lt_of_succ (lt.base (succ a)) := lt.trans (lt.base a) (lt.base (succ a)) +| lt_of_succ (lt.step h) := lt.step (lt_of_succ h) diff --git a/tests/lean/run/eq18.lean b/tests/lean/run/eq18.lean index cbc147156..1073158ef 100644 --- a/tests/lean/run/eq18.lean +++ b/tests/lean/run/eq18.lean @@ -1,9 +1,9 @@ import data.vector open nat vector -definition last {A : Type} : Π {n}, vector A (succ n) → A, -last (a :: nil) := a, -last (a :: v) := last v +definition last {A : Type} : Π {n}, vector A (succ n) → A +| last (a :: nil) := a +| last (a :: v) := last v theorem last_cons_nil {A : Type} {n : nat} (a : A) : last (a :: nil) = a := rfl diff --git a/tests/lean/run/eq19.lean b/tests/lean/run/eq19.lean index 2e526ec21..d695c6903 100644 --- a/tests/lean/run/eq19.lean +++ b/tests/lean/run/eq19.lean @@ -3,9 +3,9 @@ open nat vector prod variables {A B : Type} -definition unzip : Π {n}, vector (A × B) n → vector A n × vector B n, -unzip nil := (nil, nil), -unzip ((a, b) :: t) := (a :: pr₁ (unzip t), b :: pr₂ (unzip t)) +definition unzip : Π {n}, vector (A × B) n → vector A n × vector B n +| unzip nil := (nil, nil) +| unzip ((a, b) :: t) := (a :: pr₁ (unzip t), b :: pr₂ (unzip t)) theorem unzip_nil : unzip nil = (@nil A, @nil B) := rfl diff --git a/tests/lean/run/eq2.lean b/tests/lean/run/eq2.lean index 2ecc6a4a4..f3639b0aa 100644 --- a/tests/lean/run/eq2.lean +++ b/tests/lean/run/eq2.lean @@ -1,5 +1,5 @@ -definition symm {A : Type} : Π {a b : A}, a = b → b = a, -symm rfl := rfl +definition symm {A : Type} : Π {a b : A}, a = b → b = a +| symm rfl := rfl -definition trans {A : Type} : Π {a b c : A}, a = b → b = c → a = c, -trans rfl rfl := rfl +definition trans {A : Type} : Π {a b c : A}, a = b → b = c → a = c +| trans rfl rfl := rfl diff --git a/tests/lean/run/eq20.lean b/tests/lean/run/eq20.lean index 1ca5a107f..a953a9d98 100644 --- a/tests/lean/run/eq20.lean +++ b/tests/lean/run/eq20.lean @@ -7,9 +7,9 @@ context parameter [H : decidable_pred p] include H - definition filter : list A → list A, - filter nil := nil, - filter (a :: l) := if p a then a :: filter l else filter l + definition filter : list A → list A + | filter nil := nil + | filter (a :: l) := if p a then a :: filter l else filter l theorem filter_nil : filter nil = nil := rfl diff --git a/tests/lean/run/eq21.lean b/tests/lean/run/eq21.lean index d4618acf4..e61c2b491 100644 --- a/tests/lean/run/eq21.lean +++ b/tests/lean/run/eq21.lean @@ -3,9 +3,9 @@ eqf : nat → nat → formula, impf : formula → formula → formula namespace formula - definition denote : formula → Prop, - denote (eqf n1 n2) := n1 = n2, - denote (impf f1 f2) := denote f1 → denote f2 + definition denote : formula → Prop + | denote (eqf n1 n2) := n1 = n2 + | denote (impf f1 f2) := denote f1 → denote f2 theorem denote_eqf (n1 n2 : nat) : denote (eqf n1 n2) = (n1 = n2) := rfl diff --git a/tests/lean/run/eq22.lean b/tests/lean/run/eq22.lean index fae15af6a..dd313877e 100644 --- a/tests/lean/run/eq22.lean +++ b/tests/lean/run/eq22.lean @@ -1,9 +1,9 @@ import data.list open list -definition head {A : Type} : Π (l : list A), l ≠ nil → A, -head nil h := absurd rfl h, -head (a :: l) _ := a +definition head {A : Type} : Π (l : list A), l ≠ nil → A +| head nil h := absurd rfl h +| head (a :: l) _ := a theorem head_cons {A : Type} (a : A) (l : list A) (h : a :: l ≠ nil) : head (a :: l) h = a := rfl diff --git a/tests/lean/run/eq23.lean b/tests/lean/run/eq23.lean index e1a44aafc..1c4afcaee 100644 --- a/tests/lean/run/eq23.lean +++ b/tests/lean/run/eq23.lean @@ -9,9 +9,9 @@ cons : tree A → tree_list A → tree_list A namespace tree_list -definition len {A : Type} : tree_list A → nat, -len (nil A) := 0, -len (cons t l) := len l + 1 +definition len {A : Type} : tree_list A → nat +| len (nil A) := 0 +| len (cons t l) := len l + 1 theorem len_nil {A : Type} : len (nil A) = 0 := rfl diff --git a/tests/lean/run/eq24.lean b/tests/lean/run/eq24.lean index c5d3b7b97..b827e8e60 100644 --- a/tests/lean/run/eq24.lean +++ b/tests/lean/run/eq24.lean @@ -11,11 +11,11 @@ namespace tree open tree_list definition size {A : Type} : tree A → nat -with size_l : tree_list A → nat, -size (leaf a) := 1, -size (node l) := size_l l, -size_l !nil := 0, -size_l (cons t l) := size t + size_l l +with size_l : tree_list A → nat +| size (leaf a) := 1 +| size (node l) := size_l l +| size_l !nil := 0 +| size_l (cons t l) := size t + size_l l variables {A : Type} @@ -32,13 +32,13 @@ theorem size_l_cons (t : tree A) (l : tree_list A) : size_l (cons t l) = size t rfl definition eq_tree {A : Type} : tree A → tree A → Prop -with eq_tree_list : tree_list A → tree_list A → Prop, -eq_tree (leaf a₁) (leaf a₂) := a₁ = a₂, -eq_tree (node l₁) (node l₂) := eq_tree_list l₁ l₂, -eq_tree _ _ := false, -eq_tree_list !nil !nil := true, -eq_tree_list (cons t₁ l₁) (cons t₂ l₂) := eq_tree t₁ t₂ ∧ eq_tree_list l₁ l₂, -eq_tree_list _ _ := false +with eq_tree_list : tree_list A → tree_list A → Prop +| eq_tree (leaf a₁) (leaf a₂) := a₁ = a₂ +| eq_tree (node l₁) (node l₂) := eq_tree_list l₁ l₂ +| eq_tree _ _ := false +| eq_tree_list !nil !nil := true +| eq_tree_list (cons t₁ l₁) (cons t₂ l₂) := eq_tree t₁ t₂ ∧ eq_tree_list l₁ l₂ +| eq_tree_list _ _ := false theorem eq_tree_leaf (a₁ a₂ : A) : eq_tree (leaf a₁) (leaf a₂) = (a₁ = a₂) := rfl diff --git a/tests/lean/run/eq25.lean b/tests/lean/run/eq25.lean index 823ac0e6d..2768472f0 100644 --- a/tests/lean/run/eq25.lean +++ b/tests/lean/run/eq25.lean @@ -6,6 +6,6 @@ definition Nat := N open N -definition add : Nat → Nat → Nat, -add O b := b, -add (S a) b := S (add a b) +definition add : Nat → Nat → Nat +| add O b := b +| add (S a) b := S (add a b) diff --git a/tests/lean/run/eq3.lean b/tests/lean/run/eq3.lean index a1e405782..b281d7290 100644 --- a/tests/lean/run/eq3.lean +++ b/tests/lean/run/eq3.lean @@ -1,8 +1,8 @@ import data.vector open nat vector -definition swap {A : Type} : Π {n}, vector A (succ (succ n)) → vector A (succ (succ n)), -swap (a :: b :: vs) := b :: a :: vs +definition swap {A : Type} : Π {n}, vector A (succ (succ n)) → vector A (succ (succ n)) +| swap (a :: b :: vs) := b :: a :: vs example (n : nat) (a b : num) (v : vector num n) : swap (a :: b :: v) = b :: a :: v := rfl diff --git a/tests/lean/run/eq4.lean b/tests/lean/run/eq4.lean index 221adb043..923c97005 100644 --- a/tests/lean/run/eq4.lean +++ b/tests/lean/run/eq4.lean @@ -1,9 +1,9 @@ open nat -definition half : nat → nat, -half 0 := 0, -half 1 := 0, -half (x+2) := half x + 1 +definition half : nat → nat +| half 0 := 0 +| half 1 := 0 +| half (x+2) := half x + 1 theorem half0 : half 0 = 0 := rfl diff --git a/tests/lean/run/eq5.lean b/tests/lean/run/eq5.lean index 62186f0cf..cd555faeb 100644 --- a/tests/lean/run/eq5.lean +++ b/tests/lean/run/eq5.lean @@ -1,9 +1,9 @@ open nat -definition fib : nat → nat, -fib 0 := 1, -fib 1 := 1, -fib (x+2) := fib x + fib (x+1) +definition fib : nat → nat +| fib 0 := 1 +| fib 1 := 1 +| fib (x+2) := fib x + fib (x+1) theorem fib0 : fib 0 = 1 := rfl diff --git a/tests/lean/run/eq6.lean b/tests/lean/run/eq6.lean index 1a8784f4d..fbd73ecae 100644 --- a/tests/lean/run/eq6.lean +++ b/tests/lean/run/eq6.lean @@ -1,9 +1,9 @@ import data.list open list -definition append {A : Type} : list A → list A → list A, -append nil l := l, -append (h :: t) l := h :: (append t l) +definition append {A : Type} : list A → list A → list A +| append nil l := l +| append (h :: t) l := h :: (append t l) theorem append_nil {A : Type} (l : list A) : append nil l = l := rfl diff --git a/tests/lean/run/eq7.lean b/tests/lean/run/eq7.lean index a98f79991..aa20d9189 100644 --- a/tests/lean/run/eq7.lean +++ b/tests/lean/run/eq7.lean @@ -1,9 +1,9 @@ import data.vector open nat vector -definition diag {A : Type} : Π {n}, vector (vector A n) n → vector A n, -diag nil := nil, -diag ((a :: va) :: vs) := a :: diag (map tail vs) +definition diag {A : Type} : Π {n}, vector (vector A n) n → vector A n +| diag nil := nil +| diag ((a :: va) :: vs) := a :: diag (map tail vs) theorem diag_nil (A : Type) : diag (@nil (vector A 0)) = nil := rfl diff --git a/tests/lean/run/eq8.lean b/tests/lean/run/eq8.lean index 6e76166ed..3f4d99aca 100644 --- a/tests/lean/run/eq8.lean +++ b/tests/lean/run/eq8.lean @@ -1,6 +1,6 @@ import data.vector open vector -definition map {A B C : Type} (f : A → B → C) : Π {n}, vector A n → vector B n → vector C n, -map nil nil := nil, -map (a :: va) (b :: vb) := f a b :: map va vb +definition map {A B C : Type} (f : A → B → C) : Π {n}, vector A n → vector B n → vector C n +| map nil nil := nil +| map (a :: va) (b :: vb) := f a b :: map va vb diff --git a/tests/lean/run/eq9.lean b/tests/lean/run/eq9.lean index cf968c068..6443bacfc 100644 --- a/tests/lean/run/eq9.lean +++ b/tests/lean/run/eq9.lean @@ -1,9 +1,9 @@ open nat -theorem lt_trans : ∀ {a b c : nat}, a < b → b < c → a < c, -lt_trans h (lt.base _) := lt.step h, -lt_trans h₁ (lt.step h₂) := lt.step (lt_trans h₁ h₂) +theorem lt_trans : ∀ {a b c : nat}, a < b → b < c → a < c +| lt_trans h (lt.base _) := lt.step h +| lt_trans h₁ (lt.step h₂) := lt.step (lt_trans h₁ h₂) -theorem lt_succ : ∀ {a b : nat}, a < b → succ a < succ b, -lt_succ (lt.base a) := lt.base (succ a), -lt_succ (lt.step h) := lt.step (lt_succ h) +theorem lt_succ : ∀ {a b : nat}, a < b → succ a < succ b +| lt_succ (lt.base a) := lt.base (succ a) +| lt_succ (lt.step h) := lt.step (lt_succ h) diff --git a/tests/lean/run/eqn_tac.lean b/tests/lean/run/eqn_tac.lean index 24b2504b9..6b9e9903e 100644 --- a/tests/lean/run/eqn_tac.lean +++ b/tests/lean/run/eqn_tac.lean @@ -1,15 +1,15 @@ open nat -definition foo : nat → nat, -foo zero := begin exact zero end, -foo (succ a) := begin exact a end +definition foo : nat → nat +| foo zero := begin exact zero end +| foo (succ a) := begin exact a end example : foo zero = zero := rfl example (a : nat) : foo (succ a) = a := rfl -definition bla : nat → nat, -bla zero := zero, -bla (succ a) := +definition bla : nat → nat +| bla zero := zero +| bla (succ a) := begin apply foo, exact a diff --git a/tests/lean/run/finbug.lean b/tests/lean/run/finbug.lean index 4a6430828..c1819b2bd 100644 --- a/tests/lean/run/finbug.lean +++ b/tests/lean/run/finbug.lean @@ -14,18 +14,18 @@ fz : Π n, fin (succ n), fs : Π {n}, fin n → fin (succ n) namespace fin - definition to_nat : Π {n}, fin n → nat, - to_nat (fz n) := zero, - to_nat (@fs n f) := succ (@to_nat n f) + definition to_nat : Π {n}, fin n → nat + | to_nat (fz n) := zero + | to_nat (@fs n f) := succ (@to_nat n f) - definition lift : Π {n : nat}, fin n → Π (m : nat), fin (add m n), - lift (fz n) m := fz (add m n), - lift (@fs n f) m := fs (@lift n f m) + definition lift : Π {n : nat}, fin n → Π (m : nat), fin (add m n) + | lift (fz n) m := fz (add m n) + | lift (@fs n f) m := fs (@lift n f m) - theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m), - to_nat_lift (fz n) m := rfl, - to_nat_lift (@fs n f) m := calc - to_nat (fs f) = (to_nat f) + 1 : rfl - ... = (to_nat (lift f m)) + 1 : to_nat_lift f - ... = to_nat (lift (fs f) m) : rfl + theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m) + | to_nat_lift (fz n) m := rfl + | to_nat_lift (@fs n f) m := calc + to_nat (fs f) = (to_nat f) + 1 : rfl + ... = (to_nat (lift f m)) + 1 : to_nat_lift f + ... = to_nat (lift (fs f) m) : rfl end fin diff --git a/tests/lean/run/finbug2.lean b/tests/lean/run/finbug2.lean index a67f5c71b..cc8978177 100644 --- a/tests/lean/run/finbug2.lean +++ b/tests/lean/run/finbug2.lean @@ -14,18 +14,18 @@ fz : Π n, fin (succ n), fs : Π {n}, fin n → fin (succ n) namespace fin - definition to_nat : Π {n}, fin n → nat, - @to_nat (succ n) (fz n) := zero, - @to_nat (succ n) (fs f) := succ (@to_nat n f) + definition to_nat : Π {n}, fin n → nat + | @to_nat (succ n) (fz n) := zero + | @to_nat (succ n) (fs f) := succ (@to_nat n f) - definition lift : Π {n : nat}, fin n → Π (m : nat), fin (add m n), - @lift (succ n) (fz n) m := fz (add m n), - @lift (succ n) (@fs n f) m := fs (@lift n f m) + definition lift : Π {n : nat}, fin n → Π (m : nat), fin (add m n) + | @lift (succ n) (fz n) m := fz (add m n) + | @lift (succ n) (@fs n f) m := fs (@lift n f m) - theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m), - to_nat_lift (fz n) m := rfl, - to_nat_lift (@fs n f) m := calc - to_nat (fs f) = (to_nat f) + 1 : rfl - ... = (to_nat (lift f m)) + 1 : to_nat_lift f - ... = to_nat (lift (fs f) m) : rfl + theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m) + | to_nat_lift (fz n) m := rfl + | to_nat_lift (@fs n f) m := calc + to_nat (fs f) = (to_nat f) + 1 : rfl + ... = (to_nat (lift f m)) + 1 : to_nat_lift f + ... = to_nat (lift (fs f) m) : rfl end fin diff --git a/tests/lean/run/match3.lean b/tests/lean/run/match3.lean index ed891ef29..1f903778e 100644 --- a/tests/lean/run/match3.lean +++ b/tests/lean/run/match3.lean @@ -3,22 +3,22 @@ open nat definition foo (a : nat) : nat := match a with - zero := zero, - succ n := n +| zero := zero +| succ n := n end example : foo 3 = 2 := rfl open decidable -protected theorem dec_eq : ∀ x y : nat, decidable (x = y), -dec_eq zero zero := inl rfl, -dec_eq (succ x) zero := inr (λ h, nat.no_confusion h), -dec_eq zero (succ y) := inr (λ h, nat.no_confusion h), -dec_eq (succ x) (succ y) := +protected theorem dec_eq : ∀ x y : nat, decidable (x = y) +| dec_eq zero zero := inl rfl +| dec_eq (succ x) zero := inr (λ h, nat.no_confusion h) +| dec_eq zero (succ y) := inr (λ h, nat.no_confusion h) +| dec_eq (succ x) (succ y) := match dec_eq x y with - inl H := inl (eq.rec_on H rfl), - inr H := inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H)) + | inl H := inl (eq.rec_on H rfl) + | inr H := inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H)) end context @@ -28,12 +28,12 @@ context parameter [H : decidable_pred p] include H - definition filter : list A → list A, - filter nil := nil, - filter (a :: l) := + definition filter : list A → list A + | filter nil := nil + | filter (a :: l) := match H a with - inl h := a :: filter l, - inr h := filter l + | inl h := a :: filter l + | inr h := filter l end theorem filter_nil : filter nil = nil := @@ -45,9 +45,9 @@ end definition sub2 (a : nat) : nat := match a with - 0 := 0, - 1 := 0, - b+2 := b +| 0 := 0 +| 1 := 0 +| b+2 := b end example (a : nat) : sub2 (succ (succ a)) = a := rfl diff --git a/tests/lean/run/match4.lean b/tests/lean/run/match4.lean index 4aa55c10d..e4ae30904 100644 --- a/tests/lean/run/match4.lean +++ b/tests/lean/run/match4.lean @@ -2,10 +2,10 @@ open nat bool inhabited prod definition diag (a b c : bool) : nat := match (a, b, c) with - (_, tt, ff) := 1, - (ff, _, tt) := 2, - (tt, ff, _) := 3, - (_, _, _) := arbitrary nat + | (_, tt, ff) := 1 + | (ff, _, tt) := 2 + | (tt, ff, _) := 3 + | (_, _, _) := arbitrary nat end theorem diag1 (a : bool) : diag a tt ff = 1 := diff --git a/tests/lean/run/sigma_match.lean b/tests/lean/run/sigma_match.lean index 606166a96..3a647e86a 100644 --- a/tests/lean/run/sigma_match.lean +++ b/tests/lean/run/sigma_match.lean @@ -10,8 +10,8 @@ match x with ⟨a, b, h⟩ := a end -definition src2 {A B : Type} : arrow_ob A B → A, -src2 ⟨a, _, _⟩ := a +definition src2 {A B : Type} : arrow_ob A B → A +| src2 ⟨a, _, _⟩ := a definition src3 {A B : Type} (x : arrow_ob A B) : A := match x with diff --git a/tests/lean/run/unzip_bug.lean b/tests/lean/run/unzip_bug.lean index 281074b68..c71656dc5 100644 --- a/tests/lean/run/unzip_bug.lean +++ b/tests/lean/run/unzip_bug.lean @@ -3,9 +3,9 @@ open nat vector prod variables {A B : Type} -definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n, -@unzip ⌞zero⌟ nil := (nil, nil), -@unzip ⌞succ n⌟ ((a, b) :: v) := +definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n +| @unzip ⌞zero⌟ nil := (nil, nil) +| @unzip ⌞succ n⌟ ((a, b) :: v) := match unzip v with (va, vb) := (a :: va, b :: vb) end diff --git a/tests/lean/shadow.lean b/tests/lean/shadow.lean index dc54137f3..4651afca1 100644 --- a/tests/lean/shadow.lean +++ b/tests/lean/shadow.lean @@ -3,6 +3,6 @@ open nat variable a : nat -- The variable 'a' in the following definition is not the variable 'a' above -definition tadd : nat → nat → nat, -tadd zero b := b, -tadd (succ a) b := succ (tadd a b) +definition tadd : nat → nat → nat +| tadd zero b := b +| tadd (succ a) b := succ (tadd a b) diff --git a/tests/lean/shadow.lean.expected.out b/tests/lean/shadow.lean.expected.out index c80db5659..a1a8c1790 100644 --- a/tests/lean/shadow.lean.expected.out +++ b/tests/lean/shadow.lean.expected.out @@ -1 +1 @@ -shadow.lean:8:11: error: invalid recursive equation, variable 'a' has the same name of a variable in an outer-scope (solution: rename this variable) +shadow.lean:8:13: error: invalid recursive equation, variable 'a' has the same name of a variable in an outer-scope (solution: rename this variable) diff --git a/tests/lean/unzip_error.lean b/tests/lean/unzip_error.lean index 183e26ada..6cd44ffcd 100644 --- a/tests/lean/unzip_error.lean +++ b/tests/lean/unzip_error.lean @@ -3,9 +3,9 @@ open nat vector prod variables {A B : Type} -definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n, -unzip nil := (nil, nil), -unzip ((a, b) :: v) := +definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n +| unzip nil := (nil, nil) +| unzip ((a, b) :: v) := match unzip v with (va, vb) := (a :: va, b :: vb) end