feat(library/data/finset): redefine bigop for finset
This commit is contained in:
parent
53f730ec82
commit
5caa983919
2 changed files with 24 additions and 30 deletions
|
@ -231,24 +231,4 @@ theorem empty_union (s : finset A) : ∅ ∪ s = s :=
|
||||||
calc ∅ ∪ s = s ∪ ∅ : union.comm
|
calc ∅ ∪ s = s ∪ ∅ : union.comm
|
||||||
... = s : union_empty
|
... = s : union_empty
|
||||||
end union
|
end union
|
||||||
|
|
||||||
/- acc -/
|
|
||||||
section acc
|
|
||||||
variable {B : Type}
|
|
||||||
variables (f : B → A → B) (rcomm : right_commutative f) (b : B)
|
|
||||||
|
|
||||||
definition acc (s : finset A) : B :=
|
|
||||||
quot.lift_on s (λ l : nodup_list A, list.foldl f b (elt_of l))
|
|
||||||
(λ l₁ l₂ p, foldl_eq_of_perm rcomm p b)
|
|
||||||
|
|
||||||
section union
|
|
||||||
variable [h : decidable_eq A]
|
|
||||||
include h
|
|
||||||
|
|
||||||
definition acc_union {s₁ s₂ : finset A} : disjoint s₁ s₂ → acc f rcomm b (s₁ ∪ s₂) = acc f rcomm (acc f rcomm b s₁) s₂ :=
|
|
||||||
quot.induction_on₂ s₁ s₂
|
|
||||||
(λ l₁ l₂ d, foldl_union_of_disjoint f b d)
|
|
||||||
end union
|
|
||||||
|
|
||||||
end acc
|
|
||||||
end finset
|
end finset
|
||||||
|
|
|
@ -5,22 +5,36 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Module: data.finset
|
Module: data.finset
|
||||||
Author: Leonardo de Moura
|
Author: Leonardo de Moura
|
||||||
|
|
||||||
Finite sets big operators
|
Big operator for finite sets
|
||||||
-/
|
-/
|
||||||
import algebra.group data.finset.basic
|
import algebra.group data.finset.basic data.list.bigop
|
||||||
open algebra finset function binary quot
|
open algebra finset function binary quot subtype
|
||||||
|
|
||||||
namespace finset
|
namespace finset
|
||||||
variables {A B : Type}
|
variables {A B : Type}
|
||||||
variable [g : comm_group B]
|
variable [g : comm_group B]
|
||||||
include g
|
include g
|
||||||
|
|
||||||
protected definition mulf (f : A → B) : B → A → B :=
|
|
||||||
λ b a, b * f a
|
|
||||||
|
|
||||||
protected theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
|
|
||||||
right_commutative_compose_right (@has_mul.mul B g) f (@mul.right_comm B g)
|
|
||||||
|
|
||||||
definition bigop (s : finset A) (f : A → B) : B :=
|
definition bigop (s : finset A) (f : A → B) : B :=
|
||||||
acc (mulf f) (mulf_rcomm f) 1 s
|
quot.lift_on s
|
||||||
|
(λ l, list.bigop (elt_of l) f)
|
||||||
|
(λ l₁ l₂ p, list.bigop_of_perm f p)
|
||||||
|
|
||||||
|
theorem bigop_empty (f : A → B) : bigop ∅ f = 1 :=
|
||||||
|
list.bigop_nil f
|
||||||
|
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
theorem bigop_insert_of_mem (f : A → B) {a : A} {s : finset A} : a ∈ s → bigop (insert a s) f = bigop s f :=
|
||||||
|
quot.induction_on s
|
||||||
|
(λ l ainl, list.bigop_insert_of_mem f ainl)
|
||||||
|
|
||||||
|
theorem bigop_insert_of_not_mem (f : A → B) {a : A} {s : finset A} : a ∉ s → bigop (insert a s) f = f a * bigop s f :=
|
||||||
|
quot.induction_on s
|
||||||
|
(λ l nainl, list.bigop_insert_of_not_mem f nainl)
|
||||||
|
|
||||||
|
theorem bigop_union (f : A → B) {s₁ s₂ : finset A} : disjoint s₁ s₂ → bigop (s₁ ∪ s₂) f = bigop s₁ f * bigop s₂ f :=
|
||||||
|
quot.induction_on₂ s₁ s₂
|
||||||
|
(λ l₁ l₂ d, list.bigop_union f d)
|
||||||
end finset
|
end finset
|
||||||
|
|
Loading…
Reference in a new issue