feat(library/tactic/rewrite_tactic): improve matcher in rewrite_tactic

closes #433
This commit is contained in:
Leonardo de Moura 2015-02-13 12:40:55 -08:00
parent db71a29c81
commit 5cbdd77ad0
2 changed files with 135 additions and 6 deletions

View file

@ -8,6 +8,7 @@ Author: Leonardo de Moura
#include <string> #include <string>
#include "util/interrupt.h" #include "util/interrupt.h"
#include "util/list_fn.h" #include "util/list_fn.h"
#include "util/rb_map.h"
#include "util/sexpr/option_declarations.h" #include "util/sexpr/option_declarations.h"
#include "kernel/instantiate.h" #include "kernel/instantiate.h"
#include "kernel/abstract.h" #include "kernel/abstract.h"
@ -19,6 +20,7 @@ Author: Leonardo de Moura
#include "library/kernel_serializer.h" #include "library/kernel_serializer.h"
#include "library/reducible.h" #include "library/reducible.h"
#include "library/util.h" #include "library/util.h"
#include "library/expr_lt.h"
#include "library/match.h" #include "library/match.h"
#include "library/projection.h" #include "library/projection.h"
#include "library/local_context.h" #include "library/local_context.h"
@ -730,7 +732,7 @@ class rewrite_fn {
expr to_meta_idx(expr const & e) { expr to_meta_idx(expr const & e) {
m_lsubst.clear(); m_lsubst.clear();
m_esubst.clear(); m_esubst.clear();
name_map<expr> emap; rb_map<expr, expr, expr_quick_cmp> emap;
name_map<level> lmap; name_map<level> lmap;
auto to_meta_idx = [&](level const & l) { auto to_meta_idx = [&](level const & l) {
@ -753,22 +755,27 @@ class rewrite_fn {
}); });
}; };
// return true if the arguments of e are not metavar applications
auto no_meta_args = [&](expr const & e) {
buffer<expr> args;
get_app_args(e, args);
return !std::any_of(args.begin(), args.end(), [&](expr const & e) { return is_meta(e); });
};
return replace(e, [&](expr const & e, unsigned) { return replace(e, [&](expr const & e, unsigned) {
if (!has_metavar(e)) { if (!has_metavar(e)) {
return some_expr(e); // done return some_expr(e); // done
} else if (is_binding(e)) { } else if (is_binding(e)) {
throw_rewrite_exception("invalid rewrite tactic, pattern contains binders"); throw_rewrite_exception("invalid rewrite tactic, pattern contains binders");
} else if (is_meta(e)) { } else if (is_meta(e)) {
expr const & fn = get_app_fn(e); if (auto it = emap.find(e)) {
lean_assert(is_metavar(fn));
name const & n = mlocal_name(fn);
if (auto it = emap.find(n)) {
return some_expr(*it); return some_expr(*it);
} else { } else {
unsigned next_idx = m_esubst.size(); unsigned next_idx = m_esubst.size();
expr r = mk_idx_meta(next_idx, m_tc->infer(e).first); expr r = mk_idx_meta(next_idx, m_tc->infer(e).first);
m_esubst.push_back(none_expr()); m_esubst.push_back(none_expr());
emap.insert(n, r); if (no_meta_args(e))
emap.insert(e, r); // cache only if arguments of e are not metavariables
return some_expr(r); return some_expr(r);
} }
} else if (is_constant(e)) { } else if (is_constant(e)) {

122
tests/lean/hott/433.hlean Normal file
View file

@ -0,0 +1,122 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
import types.sigma
open eq equiv is_equiv funext
namespace pi
universe variables l k
variables {A A' : Type.{l}} {B : A → Type.{k}} {B' : A' → Type.{k}} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
/- Paths -/
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f g].
This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
/- Now we show how these things compute. -/
definition apD10_path_pi [H : funext] (h : f g) : apD10 (path_pi h) h :=
apD10 (retr apD10 h)
definition path_pi_eta [H : funext] (p : f = g) : path_pi (apD10 p) = p :=
sect apD10 p
definition path_pi_idp [H : funext] : path_pi (λx : A, refl (f x)) = refl f :=
!path_pi_eta
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f = g) ≃ (f g) :=
equiv.mk _ !funext.ap
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
: is_equiv (@path_pi _ _ _ f g) :=
inv_closed apD10
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f g) ≃ (f = g) :=
equiv.mk _ !is_equiv_path_pi
/- Transport -/
protected definition transport (p : a = a') (f : Π(b : B a), C a b)
: (transport (λa, Π(b : B a), C a b) p f)
(λb, transport (C a') !transport_pV (transportD _ _ p _ (f (p⁻¹ ▹ b)))) :=
eq.rec_on p (λx, idp)
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
definition transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b)
: (eq.transport (λa, Π(b : A'), C a b) p f) (λb, eq.transport (λa, C a b) p (f b)) :=
eq.rec_on p (λx, idp)
/- Maps on paths -/
/- The action of maps given by lambda. -/
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a = a') (f : Πa b, C b) :
ap (λa b, f a b) p = path_pi (λb, ap (λa, f a b) p) :=
begin
apply (eq.rec_on p),
apply inverse,
apply path_pi_idp
end
/- Dependent paths -/
/- with more implicit arguments the conclusion of the following theorem is
(Π(b : B a), transportD B C p b (f b) = g (eq.transport B p b)) ≃
(eq.transport (λa, Π(b : B a), C a b) p f = g) -/
definition dpath_pi [H : funext] (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
: (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_path) g
section open sigma sigma.ops
/- more implicit arguments:
(Π(b : B a), eq.transport C (sigma.path p idp) (f b) = g (p ▹ b)) ≃
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (eq.transport B p b)) -/
definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma.path p idp) ▹ (f b) = g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) = g (p ▹ b)) :=
eq.rec_on p (λg, !equiv.refl) g
end
variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
definition transport_V [reducible] (P : A → Type) {x y : A} (p : x = y) (u : P y) : P x :=
p⁻¹ ▹ u
protected definition functor_pi : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a')))
/- Equivalences -/
definition isequiv_functor_pi [instance] (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
[H0 : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
: is_equiv (functor_pi f0 f1) :=
begin
apply (adjointify (functor_pi f0 f1) (functor_pi (f0⁻¹)
(λ(a : A) (b' : B' (f0⁻¹ a)), transport B (retr f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))),
intro h, apply path_pi,
esimp {functor_pi, function.compose}, -- simplify (and unfold function_pi and function.compose)
--first subgoal
intro a', esimp,
rewrite adj,
rewrite -transport_compose,
rewrite {f1 a' _}(ap_transport _ f1 _),
apply (transport_V (λx, sect f0 a' ▹ x = h a') (retr (f1 _) _)),
-- retr cannot be used as rewrite rule, the resulting type is not an equality
apply apD,
intro h, beta,
apply path_pi, intro a, esimp,
apply (transport_V (λx, retr f0 a ▹ x = h a) (sect (f1 _) _)),
esimp {function.id},
apply apD
end
end pi