fix(doc/lean/library_style): code snippets must be valid Lean code

The test suite executes all code snippets in .org files and report errors.
This commit is contained in:
Leonardo de Moura 2015-05-12 06:38:16 -07:00
parent b6fff9fbe1
commit 5cde3d5c1c

View file

@ -30,7 +30,7 @@ check and.comm
check mul.comm
check and.assoc
check mul.assoc
check mul.left_cancel -- multiplication is left cancelative
check @algebra.mul.left_cancel -- multiplication is left cancelative
#+END_SRC
In particular, this includes =intro= and =elim= operations for logical
connectives, and properties of relations:
@ -58,8 +58,8 @@ open nat algebra
check succ_ne_zero
check mul_zero
check mul_one
check sub_add_eq_add_sub
check le_iff_lt_or_eq
check @sub_add_eq_add_sub
check @le_iff_lt_or_eq
#+END_SRC
If only a prefix of the description is enough to convey the meaning,
the name may be made even shorter:
@ -67,12 +67,12 @@ the name may be made even shorter:
import standard algebra.ordered_ring
open nat algebra
check neg_neg
check pred_succ
check @neg_neg
check nat.pred_succ
#+END_SRC
When an operation is written as infix, the theorem names follow
suit. For example, we write =neg_mul_neg= rather than =mul_neg_neg= to
describe the patter =-a * -b=.
describe the patter =-a * -b=.
Sometimes, to disambiguate the name of theorem or better convey the
intended reference, it is necessary to describe some of the
@ -103,7 +103,7 @@ check add_lt_of_nonpos_of_lt
These conventions are not perfect. They cannot distinguish compound
expressions up to associativity, or repeated occurrences in a
pattern. For that, we make do as best we can. For example, =a + b - b
= a= could be named either =add_sub_self= or =add_sub_cancel=.
= a= could be named either =add_sub_self= or =add_sub_cancel=.
Sometimes the word "left" or "right" is helpful to describe variants
of a theorem.
@ -154,14 +154,16 @@ forces a break to suggest the the break is artificial rather than
structural, as in the statement of theorem:
#+BEGIN_SRC lean
theorem two_step_induction_on {P : nat → Bool} (a : nat) (H1 : P 0) (H2 : P (succ 0))
open nat
theorem two_step_induction_on {P : nat → Prop} (a : nat) (H1 : P 0) (H2 : P (succ 0))
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
sorry
#+END_SRC
If you want to indent to make parameters line up, that is o.k. too:
#+BEGIN_SRC lean
theorem two_step_induction_on {P : nat → Bool} (a : nat) (H1 : P 0) (H2 : P (succ 0))
open nat
theorem two_step_induction_on {P : nat → Prop} (a : nat) (H1 : P 0) (H2 : P (succ 0))
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) :
P a :=
sorry
@ -170,17 +172,20 @@ sorry
After stating the theorem, we generally do not indent the first line
of a proof, so that the proof is "flush left" in the file.
#+BEGIN_SRC lean
theorem nat_case {P : nat → Bool} (n : nat) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
induction_on n H1 (take m IH, H2 m)
open nat
theorem nat_case {P : nat → Prop} (n : nat) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
nat.induction_on n H1 (take m IH, H2 m)
#+END_SRC
When a proof rule takes multiple arguments, it is sometimes clearer, and often
necessary, to put some of the arguments on subsequent lines. In that case,
indent each argument.
#+BEGIN_SRC lean
theorem nat_discriminate {B : Bool} {n : nat} (H1: n = 0 → B)
open nat
axiom zero_or_succ (n : nat) : n = zero n = succ (pred n)
theorem nat_discriminate {B : Prop} {n : nat} (H1: n = 0 → B)
(H2 : ∀m, n = succ m → B) : B :=
or_elim (zero_or_succ n)
or.elim (zero_or_succ n)
(take H3 : n = zero, H1 H3)
(take H3 : n = succ (pred n), H2 (pred n) H3)
#+END_SRC
@ -188,6 +193,11 @@ Don't orphan parentheses; keep them with their arguments.
Here is a longer example.
#+BEGIN_SRC lean
import data.list
open list eq.ops
variable {T : Type}
local attribute mem [reducible]
local attribute append [reducible]
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
list.induction_on l
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil_iff H))
@ -206,24 +216,25 @@ list.induction_on l
A short definition can be written on a single line:
#+BEGIN_SRC lean
open nat
definition square (x : nat) : nat := x * x
#+END_SRC
For longer definitions, use conventions like those for theorems.
A "have" / "from" pair can be put on the same line.
#+BEGIN_SRC lean
#+BEGIN_SRC
have H2 : n ≠ succ k, from subst (ne_symm (succ_ne_zero k)) (symm H),
[...]
#+END_SRC
You can also put it on the next line, if the justification is long.
#+BEGIN_SRC lean
#+BEGIN_SRC
have H2 : n ≠ succ k,
from subst (ne_symm (succ_ne_zero k)) (symm H),
[...]
#+END_SRC
If the justification takes more than a single line, keep the "from" on the same
line as the "have", and then begin the justification indented on the next line.
#+BEGIN_SRC lean
#+BEGIN_SRC
have n ≠ succ k, from
not_intro
(take H4 : n = succ k,
@ -237,19 +248,21 @@ When the arguments themselves are long enough to require line breaks, use
an additional indent for every line after the first, as in the following
example:
#+BEGIN_SRC lean
import data.nat
open nat eq
theorem add_right_inj {n m k : nat} : n + m = n + k → m = k :=
induction_on n
nat.induction_on n
(take H : 0 + m = 0 + k,
calc
m = 0 + m : symm (add_zero_left m)
m = 0 + m : symm (zero_add m)
... = 0 + k : H
... = k : add_zero_left k)
... = k : zero_add)
(take (n : nat) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k), from
calc
succ (n + m) = succ n + m : symm (add_succ_left n m)
succ (n + m) = succ n + m : symm (succ_add n m)
... = succ n + k : H
... = succ (n + k) : add_succ_left n k,
... = succ (n + k) : succ_add n k,
have H3 : n + m = n + k, from succ_inj H2,
IH H3)
#+END_SRC lean
@ -259,7 +272,7 @@ Binders
Use a space after binders:
or this:
#+BEGIN_SRC lean
#+BEGIN_SRC
example : ∀ X : Type, ∀ x : X, ∃ y, (λ u, u) x = y
#+END_SRC
@ -269,7 +282,7 @@ Calculations
There is some flexibility in how you write calculational proofs. In
general, it looks nice when the comparisons and justifications line up
neatly:
#+BEGIN_SRC lean
#+BEGIN_SRC
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
| [] := rfl
| (a :: l) := calc
@ -278,13 +291,13 @@ theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
... = reverse [a] ++ reverse (reverse l) : reverse_append
... = reverse [a] ++ l : reverse_reverse
... = a :: l : rfl
#+END_SRC lean
#+END_SRC
To be more compact, for example, you may do this only after the first line:
#+BEGIN_SRC lean
#+BEGIN_SRC
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
| [] := rfl
| (a :: l) := calc
reverse (reverse (a :: l))
reverse (reverse (a :: l))
= reverse (concat a (reverse l)) : rfl
... = reverse (reverse l ++ [a]) : concat_eq_append
... = reverse [a] ++ reverse (reverse l) : reverse_append
@ -297,7 +310,7 @@ Sections
Within a section, you can indent definitions and theorems to make the
scope salient:
#+BEGIN_SRC lean
#+BEGIN_SRC
section my_section
variable A : Type
variable P : Prop