fix(doc/lean/library_style): code snippets must be valid Lean code
The test suite executes all code snippets in .org files and report errors.
This commit is contained in:
parent
b6fff9fbe1
commit
5cde3d5c1c
1 changed files with 40 additions and 27 deletions
|
@ -30,7 +30,7 @@ check and.comm
|
||||||
check mul.comm
|
check mul.comm
|
||||||
check and.assoc
|
check and.assoc
|
||||||
check mul.assoc
|
check mul.assoc
|
||||||
check mul.left_cancel -- multiplication is left cancelative
|
check @algebra.mul.left_cancel -- multiplication is left cancelative
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
In particular, this includes =intro= and =elim= operations for logical
|
In particular, this includes =intro= and =elim= operations for logical
|
||||||
connectives, and properties of relations:
|
connectives, and properties of relations:
|
||||||
|
@ -58,8 +58,8 @@ open nat algebra
|
||||||
check succ_ne_zero
|
check succ_ne_zero
|
||||||
check mul_zero
|
check mul_zero
|
||||||
check mul_one
|
check mul_one
|
||||||
check sub_add_eq_add_sub
|
check @sub_add_eq_add_sub
|
||||||
check le_iff_lt_or_eq
|
check @le_iff_lt_or_eq
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
If only a prefix of the description is enough to convey the meaning,
|
If only a prefix of the description is enough to convey the meaning,
|
||||||
the name may be made even shorter:
|
the name may be made even shorter:
|
||||||
|
@ -67,12 +67,12 @@ the name may be made even shorter:
|
||||||
import standard algebra.ordered_ring
|
import standard algebra.ordered_ring
|
||||||
open nat algebra
|
open nat algebra
|
||||||
|
|
||||||
check neg_neg
|
check @neg_neg
|
||||||
check pred_succ
|
check nat.pred_succ
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
When an operation is written as infix, the theorem names follow
|
When an operation is written as infix, the theorem names follow
|
||||||
suit. For example, we write =neg_mul_neg= rather than =mul_neg_neg= to
|
suit. For example, we write =neg_mul_neg= rather than =mul_neg_neg= to
|
||||||
describe the patter =-a * -b=.
|
describe the patter =-a * -b=.
|
||||||
|
|
||||||
Sometimes, to disambiguate the name of theorem or better convey the
|
Sometimes, to disambiguate the name of theorem or better convey the
|
||||||
intended reference, it is necessary to describe some of the
|
intended reference, it is necessary to describe some of the
|
||||||
|
@ -103,7 +103,7 @@ check add_lt_of_nonpos_of_lt
|
||||||
These conventions are not perfect. They cannot distinguish compound
|
These conventions are not perfect. They cannot distinguish compound
|
||||||
expressions up to associativity, or repeated occurrences in a
|
expressions up to associativity, or repeated occurrences in a
|
||||||
pattern. For that, we make do as best we can. For example, =a + b - b
|
pattern. For that, we make do as best we can. For example, =a + b - b
|
||||||
= a= could be named either =add_sub_self= or =add_sub_cancel=.
|
= a= could be named either =add_sub_self= or =add_sub_cancel=.
|
||||||
|
|
||||||
Sometimes the word "left" or "right" is helpful to describe variants
|
Sometimes the word "left" or "right" is helpful to describe variants
|
||||||
of a theorem.
|
of a theorem.
|
||||||
|
@ -154,14 +154,16 @@ forces a break to suggest the the break is artificial rather than
|
||||||
structural, as in the statement of theorem:
|
structural, as in the statement of theorem:
|
||||||
|
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
theorem two_step_induction_on {P : nat → Bool} (a : nat) (H1 : P 0) (H2 : P (succ 0))
|
open nat
|
||||||
|
theorem two_step_induction_on {P : nat → Prop} (a : nat) (H1 : P 0) (H2 : P (succ 0))
|
||||||
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
|
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
|
||||||
sorry
|
sorry
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
If you want to indent to make parameters line up, that is o.k. too:
|
If you want to indent to make parameters line up, that is o.k. too:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
theorem two_step_induction_on {P : nat → Bool} (a : nat) (H1 : P 0) (H2 : P (succ 0))
|
open nat
|
||||||
|
theorem two_step_induction_on {P : nat → Prop} (a : nat) (H1 : P 0) (H2 : P (succ 0))
|
||||||
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) :
|
(H3 : ∀ (n : nat) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) :
|
||||||
P a :=
|
P a :=
|
||||||
sorry
|
sorry
|
||||||
|
@ -170,17 +172,20 @@ sorry
|
||||||
After stating the theorem, we generally do not indent the first line
|
After stating the theorem, we generally do not indent the first line
|
||||||
of a proof, so that the proof is "flush left" in the file.
|
of a proof, so that the proof is "flush left" in the file.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
theorem nat_case {P : nat → Bool} (n : nat) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
|
open nat
|
||||||
induction_on n H1 (take m IH, H2 m)
|
theorem nat_case {P : nat → Prop} (n : nat) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
|
||||||
|
nat.induction_on n H1 (take m IH, H2 m)
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
When a proof rule takes multiple arguments, it is sometimes clearer, and often
|
When a proof rule takes multiple arguments, it is sometimes clearer, and often
|
||||||
necessary, to put some of the arguments on subsequent lines. In that case,
|
necessary, to put some of the arguments on subsequent lines. In that case,
|
||||||
indent each argument.
|
indent each argument.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
theorem nat_discriminate {B : Bool} {n : nat} (H1: n = 0 → B)
|
open nat
|
||||||
|
axiom zero_or_succ (n : nat) : n = zero ∨ n = succ (pred n)
|
||||||
|
theorem nat_discriminate {B : Prop} {n : nat} (H1: n = 0 → B)
|
||||||
(H2 : ∀m, n = succ m → B) : B :=
|
(H2 : ∀m, n = succ m → B) : B :=
|
||||||
or_elim (zero_or_succ n)
|
or.elim (zero_or_succ n)
|
||||||
(take H3 : n = zero, H1 H3)
|
(take H3 : n = zero, H1 H3)
|
||||||
(take H3 : n = succ (pred n), H2 (pred n) H3)
|
(take H3 : n = succ (pred n), H2 (pred n) H3)
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
@ -188,6 +193,11 @@ Don't orphan parentheses; keep them with their arguments.
|
||||||
|
|
||||||
Here is a longer example.
|
Here is a longer example.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
|
import data.list
|
||||||
|
open list eq.ops
|
||||||
|
variable {T : Type}
|
||||||
|
local attribute mem [reducible]
|
||||||
|
local attribute append [reducible]
|
||||||
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
||||||
list.induction_on l
|
list.induction_on l
|
||||||
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil_iff H))
|
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil_iff H))
|
||||||
|
@ -206,24 +216,25 @@ list.induction_on l
|
||||||
|
|
||||||
A short definition can be written on a single line:
|
A short definition can be written on a single line:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
|
open nat
|
||||||
definition square (x : nat) : nat := x * x
|
definition square (x : nat) : nat := x * x
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
For longer definitions, use conventions like those for theorems.
|
For longer definitions, use conventions like those for theorems.
|
||||||
|
|
||||||
A "have" / "from" pair can be put on the same line.
|
A "have" / "from" pair can be put on the same line.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
have H2 : n ≠ succ k, from subst (ne_symm (succ_ne_zero k)) (symm H),
|
have H2 : n ≠ succ k, from subst (ne_symm (succ_ne_zero k)) (symm H),
|
||||||
[...]
|
[...]
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
You can also put it on the next line, if the justification is long.
|
You can also put it on the next line, if the justification is long.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
have H2 : n ≠ succ k,
|
have H2 : n ≠ succ k,
|
||||||
from subst (ne_symm (succ_ne_zero k)) (symm H),
|
from subst (ne_symm (succ_ne_zero k)) (symm H),
|
||||||
[...]
|
[...]
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
If the justification takes more than a single line, keep the "from" on the same
|
If the justification takes more than a single line, keep the "from" on the same
|
||||||
line as the "have", and then begin the justification indented on the next line.
|
line as the "have", and then begin the justification indented on the next line.
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
have n ≠ succ k, from
|
have n ≠ succ k, from
|
||||||
not_intro
|
not_intro
|
||||||
(take H4 : n = succ k,
|
(take H4 : n = succ k,
|
||||||
|
@ -237,19 +248,21 @@ When the arguments themselves are long enough to require line breaks, use
|
||||||
an additional indent for every line after the first, as in the following
|
an additional indent for every line after the first, as in the following
|
||||||
example:
|
example:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC lean
|
||||||
|
import data.nat
|
||||||
|
open nat eq
|
||||||
theorem add_right_inj {n m k : nat} : n + m = n + k → m = k :=
|
theorem add_right_inj {n m k : nat} : n + m = n + k → m = k :=
|
||||||
induction_on n
|
nat.induction_on n
|
||||||
(take H : 0 + m = 0 + k,
|
(take H : 0 + m = 0 + k,
|
||||||
calc
|
calc
|
||||||
m = 0 + m : symm (add_zero_left m)
|
m = 0 + m : symm (zero_add m)
|
||||||
... = 0 + k : H
|
... = 0 + k : H
|
||||||
... = k : add_zero_left k)
|
... = k : zero_add)
|
||||||
(take (n : nat) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
(take (n : nat) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
||||||
have H2 : succ (n + m) = succ (n + k), from
|
have H2 : succ (n + m) = succ (n + k), from
|
||||||
calc
|
calc
|
||||||
succ (n + m) = succ n + m : symm (add_succ_left n m)
|
succ (n + m) = succ n + m : symm (succ_add n m)
|
||||||
... = succ n + k : H
|
... = succ n + k : H
|
||||||
... = succ (n + k) : add_succ_left n k,
|
... = succ (n + k) : succ_add n k,
|
||||||
have H3 : n + m = n + k, from succ_inj H2,
|
have H3 : n + m = n + k, from succ_inj H2,
|
||||||
IH H3)
|
IH H3)
|
||||||
#+END_SRC lean
|
#+END_SRC lean
|
||||||
|
@ -259,7 +272,7 @@ Binders
|
||||||
|
|
||||||
Use a space after binders:
|
Use a space after binders:
|
||||||
or this:
|
or this:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
example : ∀ X : Type, ∀ x : X, ∃ y, (λ u, u) x = y
|
example : ∀ X : Type, ∀ x : X, ∃ y, (λ u, u) x = y
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
|
@ -269,7 +282,7 @@ Calculations
|
||||||
There is some flexibility in how you write calculational proofs. In
|
There is some flexibility in how you write calculational proofs. In
|
||||||
general, it looks nice when the comparisons and justifications line up
|
general, it looks nice when the comparisons and justifications line up
|
||||||
neatly:
|
neatly:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
||||||
| [] := rfl
|
| [] := rfl
|
||||||
| (a :: l) := calc
|
| (a :: l) := calc
|
||||||
|
@ -278,13 +291,13 @@ theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
||||||
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
||||||
... = reverse [a] ++ l : reverse_reverse
|
... = reverse [a] ++ l : reverse_reverse
|
||||||
... = a :: l : rfl
|
... = a :: l : rfl
|
||||||
#+END_SRC lean
|
#+END_SRC
|
||||||
To be more compact, for example, you may do this only after the first line:
|
To be more compact, for example, you may do this only after the first line:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
||||||
| [] := rfl
|
| [] := rfl
|
||||||
| (a :: l) := calc
|
| (a :: l) := calc
|
||||||
reverse (reverse (a :: l))
|
reverse (reverse (a :: l))
|
||||||
= reverse (concat a (reverse l)) : rfl
|
= reverse (concat a (reverse l)) : rfl
|
||||||
... = reverse (reverse l ++ [a]) : concat_eq_append
|
... = reverse (reverse l ++ [a]) : concat_eq_append
|
||||||
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
||||||
|
@ -297,7 +310,7 @@ Sections
|
||||||
|
|
||||||
Within a section, you can indent definitions and theorems to make the
|
Within a section, you can indent definitions and theorems to make the
|
||||||
scope salient:
|
scope salient:
|
||||||
#+BEGIN_SRC lean
|
#+BEGIN_SRC
|
||||||
section my_section
|
section my_section
|
||||||
variable A : Type
|
variable A : Type
|
||||||
variable P : Prop
|
variable P : Prop
|
||||||
|
|
Loading…
Reference in a new issue