refactor(library/data/bv): Cleanup formatting inconsistencies
This commit is contained in:
parent
3fddca81b5
commit
5cf6e18af0
1 changed files with 43 additions and 47 deletions
|
@ -74,67 +74,62 @@ end shift
|
|||
section bitwise
|
||||
variable { n : ℕ }
|
||||
|
||||
-- | Bitwise and
|
||||
definition bv_not : bv n → bv n := map bnot
|
||||
definition bv_and : bv n → bv n → bv n := map₂ band
|
||||
|
||||
-- | Bitwise or
|
||||
definition bv_or : bv n → bv n → bv n := map₂ bor
|
||||
|
||||
-- | Bitwise xor
|
||||
definition bv_xor : bv n → bv n → bv n := map₂ bxor
|
||||
|
||||
end bitwise
|
||||
|
||||
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
|
||||
protected definition carry (x:bool) (y:bool) (c:bool) :=
|
||||
section arith
|
||||
|
||||
variable { n : ℕ }
|
||||
|
||||
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
|
||||
protected definition carry (x:bool) (y:bool) (c:bool) :=
|
||||
x && y || x && c || y && c
|
||||
|
||||
-- Add with carry (no overflow)
|
||||
definition bv_adc {n:ℕ} : bv n → bv n → bool → bv (n+1)
|
||||
| x y c :=
|
||||
definition bv_neg : bv n → bv n
|
||||
| x :=
|
||||
let f := λy c, (y || c, bxor y c) in
|
||||
pr₂ (mapAccumR f x ff)
|
||||
|
||||
-- Add with carry (no overflow)
|
||||
definition bv_adc : bv n → bv n → bool → bv (n+1)
|
||||
| x y c :=
|
||||
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
|
||||
let z := tuple.mapAccumR₂ f x y c in
|
||||
(pr₁ z) :: (pr₂ z)
|
||||
|
||||
definition bv_add {n:ℕ} : bv n → bv n → bv n
|
||||
| x y := tail (bv_adc x y ff)
|
||||
definition bv_add : bv n → bv n → bv n
|
||||
| x y := tail (bv_adc x y ff)
|
||||
|
||||
protected definition borrow (x:bool) (y:bool) (b:bool) :=
|
||||
protected definition borrow (x:bool) (y:bool) (b:bool) :=
|
||||
bnot x && y || bnot x && b || y && b
|
||||
|
||||
-- Subtract with borrow
|
||||
definition bv_sbb {n:ℕ} : bv n → bv n → bool → bool × bv n
|
||||
| x y b :=
|
||||
-- Subtract with borrow
|
||||
definition bv_sbb : bv n → bv n → bool → bool × bv n
|
||||
| x y b :=
|
||||
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
|
||||
tuple.mapAccumR₂ f x y b
|
||||
|
||||
definition bv_sub {n:ℕ} (x y: bv n) := pr₂ (bv_sbb x y ff)
|
||||
definition bv_sub : bv n → bv n → bv n
|
||||
| x y := pr₂ (bv_sbb x y ff)
|
||||
|
||||
definition bv_neg {n:ℕ} : bv n → bv n
|
||||
| x :=
|
||||
let f := λy c, (y || c, bxor y c) in
|
||||
pr₂ (mapAccumR f x ff)
|
||||
definition bv_mul : bv n → bv n → bv n
|
||||
| (tag x px) y :=
|
||||
let f := λr b, (let r2 := bv_shl r 1 in cond b (bv_add r2 y) r2) in
|
||||
foldl f (bv_zero n) x
|
||||
|
||||
protected definition mulc {n:ℕ} : list bool → bv n → bv n → bv n
|
||||
| [] y r := r
|
||||
| (tt::x) y r := mulc x y (bv_add r (bv_shl y (length x)))
|
||||
| (ff::x) y r := mulc x y r
|
||||
definition bv_has_zero [instance] : has_zero (bv n) := has_zero.mk (bv_zero n)
|
||||
definition bv_has_one [instance] : has_one (bv n) := has_one.mk (bv_one n)
|
||||
definition bv_has_add [instance] : has_add (bv n) := has_add.mk bv_add
|
||||
definition bv_has_sub [instance] : has_sub (bv n) := has_sub.mk bv_sub
|
||||
definition bv_has_neg [instance] : has_neg (bv n) := has_neg.mk bv_neg
|
||||
definition bv_has_mul [instance] : has_mul (bv n) := has_mul.mk bv_mul
|
||||
|
||||
definition bv_mul {n:ℕ} : bv n → bv n → bv n
|
||||
| (tag x px) y := bv.mulc x y (bv_zero n)
|
||||
end arith
|
||||
|
||||
definition bv_has_zero [instance] {n : ℕ} : has_zero (bv n) :=
|
||||
has_zero.mk (bv_zero n)
|
||||
definition bv_has_one [instance] {n : ℕ} : has_one (bv n) :=
|
||||
has_one.mk (bv_one n)
|
||||
definition bv_has_add [instance] {n : ℕ} : has_add (bv n) :=
|
||||
has_add.mk bv_add
|
||||
definition bv_has_sub [instance] {n : ℕ} : has_sub (bv n) :=
|
||||
has_sub.mk bv_sub
|
||||
definition bv_has_neg [instance] {n : ℕ} : has_neg (bv n) :=
|
||||
has_neg.mk bv_neg
|
||||
definition bv_has_mul [instance] {n : ℕ} : has_mul (bv n) :=
|
||||
has_mul.mk bv_mul
|
||||
|
||||
section from_bv
|
||||
variable {A : Type}
|
||||
|
@ -149,4 +144,5 @@ section from_bv
|
|||
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {w:nat} (v:bv w) : A :=
|
||||
bv.fold_list_bits (to_list v) 0
|
||||
end from_bv
|
||||
|
||||
end bv
|
||||
|
|
Loading…
Reference in a new issue