refactor(library/data/bv): Cleanup formatting inconsistencies

This commit is contained in:
Joe Hendrix 2015-11-30 07:37:08 -08:00 committed by Leonardo de Moura
parent 3fddca81b5
commit 5cf6e18af0

View file

@ -74,67 +74,62 @@ end shift
section bitwise
variable { n : }
-- | Bitwise and
definition bv_not : bv n → bv n := map bnot
definition bv_and : bv n → bv n → bv n := map₂ band
-- | Bitwise or
definition bv_or : bv n → bv n → bv n := map₂ bor
-- | Bitwise xor
definition bv_xor : bv n → bv n → bv n := map₂ bxor
end bitwise
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
protected definition carry (x:bool) (y:bool) (c:bool) :=
section arith
variable { n : }
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
protected definition carry (x:bool) (y:bool) (c:bool) :=
x && y || x && c || y && c
-- Add with carry (no overflow)
definition bv_adc {n:} : bv n → bv n → bool → bv (n+1)
| x y c :=
definition bv_neg : bv n → bv n
| x :=
let f := λy c, (y || c, bxor y c) in
pr₂ (mapAccumR f x ff)
-- Add with carry (no overflow)
definition bv_adc : bv n → bv n → bool → bv (n+1)
| x y c :=
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
let z := tuple.mapAccumR₂ f x y c in
(pr₁ z) :: (pr₂ z)
definition bv_add {n:} : bv n → bv n → bv n
| x y := tail (bv_adc x y ff)
definition bv_add : bv n → bv n → bv n
| x y := tail (bv_adc x y ff)
protected definition borrow (x:bool) (y:bool) (b:bool) :=
protected definition borrow (x:bool) (y:bool) (b:bool) :=
bnot x && y || bnot x && b || y && b
-- Subtract with borrow
definition bv_sbb {n:} : bv n → bv n → bool → bool × bv n
| x y b :=
-- Subtract with borrow
definition bv_sbb : bv n → bv n → bool → bool × bv n
| x y b :=
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
tuple.mapAccumR₂ f x y b
definition bv_sub {n:} (x y: bv n) := pr₂ (bv_sbb x y ff)
definition bv_sub : bv n → bv n → bv n
| x y := pr₂ (bv_sbb x y ff)
definition bv_neg {n:} : bv n → bv n
| x :=
let f := λy c, (y || c, bxor y c) in
pr₂ (mapAccumR f x ff)
definition bv_mul : bv n → bv n → bv n
| (tag x px) y :=
let f := λr b, (let r2 := bv_shl r 1 in cond b (bv_add r2 y) r2) in
foldl f (bv_zero n) x
protected definition mulc {n:} : list bool → bv n → bv n → bv n
| [] y r := r
| (tt::x) y r := mulc x y (bv_add r (bv_shl y (length x)))
| (ff::x) y r := mulc x y r
definition bv_has_zero [instance] : has_zero (bv n) := has_zero.mk (bv_zero n)
definition bv_has_one [instance] : has_one (bv n) := has_one.mk (bv_one n)
definition bv_has_add [instance] : has_add (bv n) := has_add.mk bv_add
definition bv_has_sub [instance] : has_sub (bv n) := has_sub.mk bv_sub
definition bv_has_neg [instance] : has_neg (bv n) := has_neg.mk bv_neg
definition bv_has_mul [instance] : has_mul (bv n) := has_mul.mk bv_mul
definition bv_mul {n:} : bv n → bv n → bv n
| (tag x px) y := bv.mulc x y (bv_zero n)
end arith
definition bv_has_zero [instance] {n : } : has_zero (bv n) :=
has_zero.mk (bv_zero n)
definition bv_has_one [instance] {n : } : has_one (bv n) :=
has_one.mk (bv_one n)
definition bv_has_add [instance] {n : } : has_add (bv n) :=
has_add.mk bv_add
definition bv_has_sub [instance] {n : } : has_sub (bv n) :=
has_sub.mk bv_sub
definition bv_has_neg [instance] {n : } : has_neg (bv n) :=
has_neg.mk bv_neg
definition bv_has_mul [instance] {n : } : has_mul (bv n) :=
has_mul.mk bv_mul
section from_bv
variable {A : Type}
@ -149,4 +144,5 @@ section from_bv
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {w:nat} (v:bv w) : A :=
bv.fold_list_bits (to_list v) 0
end from_bv
end bv