test(tests/lean/run/div_wf): cleanup div based on well founded recursion

This commit is contained in:
Leonardo de Moura 2014-11-22 09:56:47 -08:00
parent 47b6cfb28d
commit 5db13da95f

View file

@ -1,18 +1,10 @@
import data.nat data.prod logic.wf_k import data.nat data.prod logic.wf_k
open nat well_founded decidable prod eq.ops open nat well_founded decidable prod eq.ops
-- I use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (assume Hc, t Hc) (assume Hnc, e Hnc)
notation `dif` c `then` t:45 `else` e:45 := dite c t e
-- Auxiliary lemma used to justify recursive call -- Auxiliary lemma used to justify recursive call
private lemma lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := private definition lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
have y0 : 0 < y, from and.elim_left H, and.rec_on H (λ ypos ylex,
have x0 : 0 < x, from lt_le.trans y0 (and.elim_right H), sub.lt (lt_le.trans ypos ylex) ypos)
sub_lt x0 y0
definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zero) dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zero)
@ -23,6 +15,12 @@ fix wdiv.F x y
theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 := theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 :=
congr_fun (well_founded.fix_eq wdiv.F x) y congr_fun (well_founded.fix_eq wdiv.F x) y
example : wdiv 5 2 = 2 :=
rfl
example : wdiv 9 3 = 3 :=
rfl
-- There is a little bit of cheating in the definition above. -- There is a little bit of cheating in the definition above.
-- I avoid the packing/unpacking into tuples. -- I avoid the packing/unpacking into tuples.
-- The actual definitional package would not do that. -- The actual definitional package would not do that.
@ -30,19 +28,16 @@ congr_fun (well_founded.fix_eq wdiv.F x) y
definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel) definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel)
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
intro_k (prod.lex.wf lt.wf lt.wf) 20 -- allow 20 recursive calls without computing with proofs prod.lex.wf lt.wf lt.wf
infixl `≺`:50 := pair_nat.lt infixl `≺`:50 := pair_nat.lt
-- Recursive lemma used to justify recursive call -- Recursive lemma used to justify recursive call
private lemma plt_aux (p : nat × nat) (H : 0 < pr₂ p ∧ pr₂ p ≤ pr₁ p) : (pr₁ p - pr₂ p, pr₂ p) ≺ p := definition plt_aux (x y : nat) (H : 0 < y ∧ y ≤ x) : (x - y, y) ≺ (x, y) :=
have aux₁ : pr₁ p - pr₂ p < pr₁ p, from lt_aux H, !lex.left (lt_aux H)
have aux₂ : (pr₁ p - pr₂ p, pr₂ p) ≺ (pr₁ p, pr₂ p), from !lex.left aux₁,
prod.eta p ▸ aux₂
definition pdiv.F (p₁ : nat × nat) (f : Π p₂ : nat × nat, p₂ ≺ p₁ → nat) : nat := definition pdiv.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat :=
let x := pr₁ p₁ in prod.cases_on p₁ (λ x y f,
let y := pr₂ p₁ in dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux x y Hp) + 1) else (λ Hnp, zero))
dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux p₁ Hp) + 1) else (λ Hnp, zero)
definition pdiv (x y : nat) := definition pdiv (x y : nat) :=
fix pdiv.F (x, y) fix pdiv.F (x, y)
@ -50,11 +45,5 @@ fix pdiv.F (x, y)
theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero := theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero :=
well_founded.fix_eq pdiv.F (x, y) well_founded.fix_eq pdiv.F (x, y)
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs. example : pdiv 17 2 = 8 :=
-- I used that, when I wrote div_def and pdiv_def.
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) :
dite c (λ Hc, t) (λ Hnc, e) = ite c t e :=
rfl
example : pdiv 398 23 = 17 :=
rfl rfl