feat(library/logic/examples/propositional): add example based on Floris Coq files formalizing propositional Calculus

This commit is contained in:
Leonardo de Moura 2015-03-30 05:12:29 -07:00
parent 299cbe4b25
commit 5ef88bfbc8
2 changed files with 209 additions and 0 deletions

View file

@ -0,0 +1,44 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
PropF has decidable equality
-/
import .soundness
open bool decidable nat
namespace PropF
-- Show that PropF has decidable equality
definition equal : PropF → PropF → bool
| (Var x) (Var y) := if x = y then tt else ff
| Bot Bot := tt
| (Conj p₁ p₂) (Conj q₁ q₂) := equal p₁ q₁ && equal p₂ q₂
| (Disj p₁ p₂) (Disj q₁ q₂) := equal p₁ q₁ && equal p₂ q₂
| (Impl p₁ p₂) (Impl q₁ q₂) := equal p₁ q₁ && equal p₂ q₂
| _ _ := ff
lemma equal_refl : ∀ p, equal p p = tt
| (Var x) := if_pos rfl
| Bot := rfl
| (Conj p₁ p₂) := begin change (equal p₁ p₁ && equal p₂ p₂ = tt), rewrite *equal_refl end
| (Disj p₁ p₂) := begin change (equal p₁ p₁ && equal p₂ p₂ = tt), rewrite *equal_refl end
| (Impl p₁ p₂) := begin change (equal p₁ p₁ && equal p₂ p₂ = tt), rewrite *equal_refl end
lemma equal_to_eq : ∀ ⦃p q⦄, equal p q = tt → p = q
| (Var x) (Var y) H :=
if H₁ : x = y then congr_arg Var H₁
else by rewrite [▸ (if x = y then tt else ff) = tt at H, if_neg H₁ at H]; exact (absurd H ff_ne_tt)
| Bot Bot H := rfl
| (Conj p₁ p₂) (Conj q₁ q₂) H :=
by rewrite [equal_to_eq (band_elim_left H), equal_to_eq (band_elim_right H)]
| (Disj p₁ p₂) (Disj q₁ q₂) H :=
by rewrite [equal_to_eq (band_elim_left H), equal_to_eq (band_elim_right H)]
| (Impl p₁ p₂) (Impl q₁ q₂) H :=
by rewrite [equal_to_eq (band_elim_left H), equal_to_eq (band_elim_right H)]
lemma has_decidable_eq [instance] : decidable_eq PropF :=
decidable_eq_of_bool_pred equal_to_eq equal_refl
end PropF

View file

@ -0,0 +1,165 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Define propositional calculus, valuation, provability, validity, prove soundness.
This file is based on Floris van Doorn Coq files.
-/
import data.nat data.list
open nat bool list decidable
definition PropVar [reducible] := nat
inductive PropF :=
| Var : PropVar → PropF
| Bot : PropF
| Conj : PropF → PropF → PropF
| Disj : PropF → PropF → PropF
| Impl : PropF → PropF → PropF
namespace PropF
notation `#`:max P:max := Var P
notation A B := Disj A B
notation A ∧ B := Conj A B
infixr `⇒`:25 := Impl
notation `⊥` := Bot
definition Neg A := A ⇒ ⊥
notation ~ A := Neg A
definition Top := ~⊥
notation `` := Top
definition BiImpl A B := A ⇒ B ∧ B ⇒ A
infixr `⇔`:25 := BiImpl
definition valuation := PropVar → bool
definition TrueQ (v : valuation) : PropF → bool
| TrueQ (# P) := v P
| TrueQ ⊥ := ff
| TrueQ (A B) := TrueQ A || TrueQ B
| TrueQ (A ∧ B) := TrueQ A && TrueQ B
| TrueQ (A ⇒ B) := bnot (TrueQ A) || TrueQ B
definition is_true [reducible] (b : bool) := b = tt
-- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ,
-- (TrueQ v A) is tt (the Boolean true)
definition Satisfies v Γ := ∀ A, A ∈ Γ → is_true (TrueQ v A)
definition Models Γ A := ∀ v, Satisfies v Γ → is_true (TrueQ v A)
infix `⊨`:80 := Models
definition Valid p := [] ⊨ p
reserve infix `⊢`:80
/- Provability -/
inductive Nc : list PropF → PropF → Prop :=
infix ⊢ := Nc
| Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A
| ImpI : ∀ Γ A B, (A::Γ) ⊢ B → Γ ⊢ (A ⇒ B)
| ImpE : ∀ Γ A B, Γ ⊢ (A ⇒ B) → Γ ⊢ A → Γ ⊢ B
| BotC : ∀ Γ A, ((~A)::Γ) ⊢ ⊥ → Γ ⊢ A
| AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ (A ∧ B)
| AndE₁ : ∀ Γ A B, Γ ⊢ (A ∧ B) → Γ ⊢ A
| AndE₂ : ∀ Γ A B, Γ ⊢ (A ∧ B) → Γ ⊢ B
| OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ (A B)
| OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ (A B)
| OrE : ∀ Γ A B C, Γ ⊢ (A B) → (A :: Γ) ⊢ C → (B :: Γ) ⊢ C → Γ ⊢ C
infix ⊢ := Nc
definition Provable A := [] ⊢ A
definition Prop_Soundness := ∀ A, Provable A → Valid A
definition Prop_Completeness := ∀ A, Valid A → Provable A
open Nc
lemma weakening2 : ∀ Γ A, Γ ⊢ A → ∀ Δ, Γ ⊆ Δ → Δ ⊢ A :=
λ Γ A H, Nc.induction_on H
(λ Γ A Hin Δ Hs, !Nax (Hs A Hin))
(λ Γ A B H w Δ Hs, !ImpI (w _ (cons_sub_cons A Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !ImpE (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A H w Δ Hs, !BotC (w _ (cons_sub_cons (~A) Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !AndI (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A B H w Δ Hs, !AndE₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !AndE₂ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₂ (w _ Hs))
(λ Γ A B C H₁ H₂ H₃ w₁ w₂ w₃ Δ Hs, !OrE (w₁ _ Hs) (w₂ _ (cons_sub_cons A Hs)) (w₃ _ (cons_sub_cons B Hs)))
lemma weakening : ∀ Γ Δ A, Γ ⊢ A → (Γ++Δ) ⊢ A :=
λ Γ Δ A H, weakening2 Γ A H (Γ++Δ) (sub_append_left Γ Δ)
lemma deduction : ∀ Γ A B, Γ ⊢ (A ⇒ B) → (A::Γ) ⊢ B :=
λ Γ A B H, ImpE _ A _ (!weakening2 H _ (sub_cons A Γ)) (!Nax (mem_cons A Γ))
lemma prov_impl : ∀ A B, Provable (A ⇒ B) → ∀ Γ, Γ ⊢ A → Γ ⊢ B :=
λ A B Hp Γ Ha,
have wHp : Γ ⊢ (A ⇒ B), from !weakening Hp,
!ImpE wHp Ha
lemma Satisfies_cons : ∀ {A Γ v}, Satisfies v Γ → is_true (TrueQ v A) → Satisfies v (A::Γ) :=
λ A Γ v s t B BinAG,
or.elim BinAG
(λ e : B = A, by rewrite e; exact t)
(λ i : B ∈ Γ, s _ i)
theorem Soundness_general : ∀ A Γ, Γ ⊢ A → Γ ⊨ A :=
λ A Γ H, Nc.induction_on H
(λ Γ A Hin v s, (s _ Hin))
(λ Γ A B H r v s,
by_cases
(λ t : is_true (TrueQ v A),
have aux₁ : Satisfies v (A::Γ), from Satisfies_cons s t,
have aux₂ : is_true (TrueQ v B), from r v aux₁,
bor_inr aux₂)
(λ f : ¬ is_true (TrueQ v A),
have aux : bnot (TrueQ v A) = tt, by rewrite (eq_ff_of_ne_tt f),
bor_inl aux))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
assert aux₁ : bnot (TrueQ v A) || TrueQ v B = tt, from r₁ v s,
assert aux₂ : TrueQ v A = tt, from r₂ v s,
by rewrite [aux₂ at aux₁, bnot_true at aux₁, ff_bor at aux₁]; exact aux₁)
(λ Γ A H r v s, by_contradiction
(λ n : TrueQ v A ≠ tt,
assert aux₁ : TrueQ v A = ff, from eq_ff_of_ne_tt n,
assert aux₂ : TrueQ v (~A) = tt, begin change (bnot (TrueQ v A) || ff = tt), rewrite aux₁ end,
have aux₃ : Satisfies v ((~A)::Γ), from Satisfies_cons s aux₂,
have aux₄ : TrueQ v ⊥ = tt, from r v aux₃,
absurd aux₄ ff_ne_tt))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
have aux₁ : TrueQ v A = tt, from r₁ v s,
have aux₂ : TrueQ v B = tt, from r₂ v s,
band_intro aux₁ aux₂)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_left aux)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_right aux)
(λ Γ A B H r v s,
have aux : TrueQ v A = tt, from r v s,
bor_inl aux)
(λ Γ A B H r v s,
have aux : TrueQ v B = tt, from r v s,
bor_inr aux)
(λ Γ A B C H₁ H₂ H₃ r₁ r₂ r₃ v s,
have aux : TrueQ v A || TrueQ v B = tt, from r₁ v s,
or.elim (or_of_bor_eq aux)
(λ At : TrueQ v A = tt,
have aux : Satisfies v (A::Γ), from Satisfies_cons s At,
r₂ v aux)
(λ Bt : TrueQ v B = tt,
have aux : Satisfies v (B::Γ), from Satisfies_cons s Bt,
r₃ v aux))
theorem Soundness : Prop_Soundness :=
λ A, Soundness_general A []
end PropF