fix(library/data/nat/basic): simplify two lemmas
This commit is contained in:
parent
3bb09e9959
commit
5f967f40b2
1 changed files with 2 additions and 2 deletions
|
@ -126,7 +126,7 @@ nat.induction_on m
|
||||||
|
|
||||||
theorem add.comm [simp] (n m : ℕ) : n + m = m + n :=
|
theorem add.comm [simp] (n m : ℕ) : n + m = m + n :=
|
||||||
nat.induction_on m
|
nat.induction_on m
|
||||||
(!add_zero ⬝ !zero_add⁻¹)
|
(by rewrite [add_zero, zero_add])
|
||||||
(take k IH, calc
|
(take k IH, calc
|
||||||
n + succ k = succ (n+k) : add_succ
|
n + succ k = succ (n+k) : add_succ
|
||||||
... = succ (k + n) : IH
|
... = succ (k + n) : IH
|
||||||
|
@ -137,7 +137,7 @@ theorem succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m :=
|
||||||
|
|
||||||
theorem add.assoc [simp] (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
theorem add.assoc [simp] (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||||||
nat.induction_on k
|
nat.induction_on k
|
||||||
(!add_zero ▸ !add_zero)
|
(by rewrite +add_zero)
|
||||||
(take l IH,
|
(take l IH,
|
||||||
calc
|
calc
|
||||||
(n + m) + succ l = succ ((n + m) + l) : add_succ
|
(n + m) + succ l = succ ((n + m) + l) : add_succ
|
||||||
|
|
Loading…
Reference in a new issue