feat(library/algebra/group): add definitions and lemmas of conjugation

This commit is contained in:
Haitao Zhang 2015-07-15 19:36:18 -07:00
parent f4cbd98692
commit 5ffcd2a2d8

View file

@ -281,6 +281,54 @@ section group
theorem mul_eq_one_iff_mul_eq_one (a b : A) : a * b = 1 ↔ b * a = 1 := theorem mul_eq_one_iff_mul_eq_one (a b : A) : a * b = 1 ↔ b * a = 1 :=
iff.intro !mul_eq_one_of_mul_eq_one !mul_eq_one_of_mul_eq_one iff.intro !mul_eq_one_of_mul_eq_one !mul_eq_one_of_mul_eq_one
definition conj_by (g a : A) := g * a * g⁻¹
definition is_conjugate (a b : A) := ∃ x, conj_by x b = a
local infixl `~` := is_conjugate
local infixr `∘c`:55 := conj_by
lemma conj_compose (f g a : A) : f ∘c g ∘c a = f*g ∘c a :=
calc f ∘c g ∘c a = f * (g * a * g⁻¹) * f⁻¹ : rfl
... = f * (g * a) * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * (g⁻¹ * f⁻¹) : mul.assoc
... = f * g * a * (f * g)⁻¹ : mul_inv
lemma conj_id (a : A) : 1 ∘c a = a :=
calc 1 * a * 1⁻¹ = a * 1⁻¹ : one_mul
... = a * 1 : one_inv
... = a : mul_one
lemma conj_one (g : A) : g ∘c 1 = 1 :=
calc g * 1 * g⁻¹ = g * g⁻¹ : mul_one
... = 1 : mul.right_inv
lemma conj_inv_cancel (g : A) : ∀ a, g⁻¹ ∘c g ∘c a = a :=
assume a, calc
g⁻¹ ∘c g ∘c a = g⁻¹*g ∘c a : conj_compose
... = 1 ∘c a : mul.left_inv
... = a : conj_id
lemma conj_inv (g : A) : ∀ a, (g ∘c a)⁻¹ = g ∘c a⁻¹ :=
take a, calc
(g * a * g⁻¹)⁻¹ = g⁻¹⁻¹ * (g * a)⁻¹ : mul_inv
... = g⁻¹⁻¹ * (a⁻¹ * g⁻¹) : mul_inv
... = g⁻¹⁻¹ * a⁻¹ * g⁻¹ : mul.assoc
... = g * a⁻¹ * g⁻¹ : inv_inv
lemma is_conj.refl (a : A) : a ~ a := exists.intro 1 (conj_id a)
lemma is_conj.symm (a b : A) : a ~ b → b ~ a :=
assume Pab, obtain x (Pconj : x ∘c b = a), from Pab,
assert Pxinv : x⁻¹ ∘c x ∘c b = x⁻¹ ∘c a, from (congr_arg2 conj_by (eq.refl x⁻¹) Pconj),
exists.intro x⁻¹ (eq.symm (conj_inv_cancel x b ▸ Pxinv))
lemma is_conj.trans (a b c : A) : a ~ b → b ~ c → a ~ c :=
assume Pab, assume Pbc,
obtain x (Px : x ∘c b = a), from Pab,
obtain y (Py : y ∘c c = b), from Pbc,
exists.intro (x*y) (calc
x*y ∘c c = x ∘c y ∘c c : conj_compose
... = x ∘c b : Py
... = a : Px)
definition group.to_left_cancel_semigroup [trans-instance] [coercion] [reducible] : definition group.to_left_cancel_semigroup [trans-instance] [coercion] [reducible] :
left_cancel_semigroup A := left_cancel_semigroup A :=
⦃ left_cancel_semigroup, s, ⦃ left_cancel_semigroup, s,