diff --git a/library/data/int/basic.lean b/library/data/int/basic.lean index 22188740a..ee6666e98 100644 --- a/library/data/int/basic.lean +++ b/library/data/int/basic.lean @@ -591,7 +591,7 @@ subst (add_comm b c) (subst (add_comm a c) (sub_add_add_right a b c)) -- TODO: fix this theorem dist_def (n m : ℕ) : dist n m = (to_nat (of_nat n - m)) := -have H [fact] : of_nat n - m = psub (pair n m), from +have H : of_nat n - m = psub (pair n m), from calc psub (pair n 0) + -psub (pair m 0) = psub (pair (n + 0) (0 + m)) : by simp ... = psub (pair n m) : by simp, diff --git a/library/data/nat/div.lean b/library/data/nat/div.lean index 298f22b0d..99678953f 100644 --- a/library/data/nat/div.lean +++ b/library/data/nat/div.lean @@ -73,7 +73,7 @@ let f := rec_measure default measure rec_val in case_strong_induction_on m (take x, have H1 : f' 0 x = default, from rfl, - have H2 [fact]: ¬ measure x < 0, from not_lt_zero, + have H2 : ¬ measure x < 0, from not_lt_zero, have H3 : restrict default measure f 0 x = default, from if_neg H2, show f' 0 x = restrict default measure f 0 x, from trans H1 (symm H3)) (take m, @@ -88,7 +88,7 @@ case_strong_induction_on m calc f' m z = restrict default measure f m z : IH m le_refl z ... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)), - have H2 [fact] : f' (succ m) x = rec_val x f, from + have H2 : f' (succ m) x = rec_val x f, from calc f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl ... = rec_val x (f' m) : if_pos H1