diff --git a/hott/algebra/group_theory.hlean b/hott/algebra/group_theory.hlean index b43137bc1..3dc578550 100644 --- a/hott/algebra/group_theory.hlean +++ b/hott/algebra/group_theory.hlean @@ -433,7 +433,7 @@ namespace group by rewrite [↑group_equiv_mul, ↑group_equiv_one, ↑group_equiv_inv, +left_inv f, mul.left_inv] - definition group_equiv_closed : group B := + definition group_equiv_closed [constructor] : group B := ⦃group, mul := group_equiv_mul, mul_assoc := group_equiv_mul_assoc, @@ -451,7 +451,7 @@ namespace group definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b := by rewrite [↑group_equiv_mul, mul.comm] - definition ab_group_equiv_closed : ab_group B := + definition ab_group_equiv_closed [constructor] : ab_group B := ⦃ab_group, group_equiv_closed f, mul_comm := group_equiv_mul_comm f⦄ end diff --git a/hott/algebra/homotopy_group.hlean b/hott/algebra/homotopy_group.hlean index 37e0727d0..0d0785427 100644 --- a/hott/algebra/homotopy_group.hlean +++ b/hott/algebra/homotopy_group.hlean @@ -203,7 +203,7 @@ namespace eq /- todo: use is_succ -/ definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B) : πg[n+1] A ≃g πg[n+1] B := - gtrunc_isomorphism_gtrunc (gloopn_isomorphism (n+1) f) + gtrunc_isomorphism_gtrunc (gloopn_isomorphism_gloopn (n+1) f) definition homotopy_group_add (A : Type*) (n m : ℕ) : πg[n+m+1] A ≃g πg[n+1] (Ω[m] A) := diff --git a/hott/algebra/inf_group_theory.hlean b/hott/algebra/inf_group_theory.hlean index 232b5a40d..63b3e3fd4 100644 --- a/hott/algebra/inf_group_theory.hlean +++ b/hott/algebra/inf_group_theory.hlean @@ -171,7 +171,7 @@ namespace group by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, ↑inf_group_equiv_inv, +left_inv f, mul.left_inv] - definition inf_group_equiv_closed : inf_group B := + definition inf_group_equiv_closed [constructor] : inf_group B := ⦃inf_group, mul := inf_group_equiv_mul, mul_assoc := inf_group_equiv_mul_assoc, @@ -183,6 +183,13 @@ namespace group end + definition InfGroup_equiv_closed [constructor] (A : InfGroup) {B : Type} (f : A ≃ B) : InfGroup := + InfGroup.mk B (inf_group_equiv_closed f _) + + definition InfGroup_equiv_closed_isomorphism [constructor] (A : InfGroup) {B : Type} (f : A ≃ B) : + A ≃∞g InfGroup_equiv_closed A f := + inf_isomorphism_of_equiv f (λa a', ap f (ap011 mul (to_left_inv f a) (to_left_inv f a'))⁻¹) + section variables {A B : Type} (f : A ≃ B) (H : ab_inf_group A) include H @@ -370,15 +377,15 @@ namespace group notation `Ωg→` := gap1 notation `Ωg→[`:95 n:0 `]`:0 := gapn n - definition gloop_isomorphism {A B : Type*} (f : A ≃* B) : Ωg A ≃∞g Ωg B := + definition gloop_isomorphism_gloop {A B : Type*} (f : A ≃* B) : Ωg A ≃∞g Ωg B := inf_isomorphism.mk (Ωg→ f) (to_is_equiv (loop_pequiv_loop f)) - definition gloopn_isomorphism (n : ℕ) [H : is_succ n] {A B : Type*} (f : A ≃* B) : + definition gloopn_isomorphism_gloopn (n : ℕ) [H : is_succ n] {A B : Type*} (f : A ≃* B) : Ωg[n] A ≃∞g Ωg[n] B := inf_isomorphism.mk (Ωg→[n] f) (to_is_equiv (loopn_pequiv_loopn n f)) - notation `Ωg≃` := gloop_isomorphism - notation `Ωg≃[`:95 n:0 `]`:0 := gloopn_isomorphism + notation `Ωg≃` := gloop_isomorphism_gloop + notation `Ωg≃[`:95 n:0 `]`:0 := gloopn_isomorphism_gloopn definition gloopn_succ_in (n : ℕ) [H : is_succ n] (A : Type*) : Ωg[succ n] A ≃∞g Ωg[n] (Ω A) := inf_isomorphism_of_equiv (loopn_succ_in n A) (by induction H with n; exact loopn_succ_in_con)