refactor(library/data/list/basic.lean): make minor renaming
This commit is contained in:
parent
75e50fd371
commit
624b664950
1 changed files with 5 additions and 5 deletions
|
@ -162,11 +162,11 @@ definition mem : T → list T → Prop
|
||||||
notation e ∈ s := mem e s
|
notation e ∈ s := mem e s
|
||||||
notation e ∉ s := ¬ e ∈ s
|
notation e ∉ s := ¬ e ∈ s
|
||||||
|
|
||||||
theorem mem_nil (x : T) : x ∈ [] ↔ false :=
|
theorem mem_nil_iff (x : T) : x ∈ [] ↔ false :=
|
||||||
iff.rfl
|
iff.rfl
|
||||||
|
|
||||||
theorem not_mem_nil (x : T) : x ∉ [] :=
|
theorem not_mem_nil (x : T) : x ∉ [] :=
|
||||||
iff.mp !mem_nil
|
iff.mp !mem_nil_iff
|
||||||
|
|
||||||
theorem mem_cons (x : T) (l : list T) : x ∈ x :: l :=
|
theorem mem_cons (x : T) (l : list T) : x ∈ x :: l :=
|
||||||
or.inl rfl
|
or.inl rfl
|
||||||
|
@ -230,7 +230,7 @@ local attribute mem [reducible]
|
||||||
local attribute append [reducible]
|
local attribute append [reducible]
|
||||||
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
||||||
list.induction_on l
|
list.induction_on l
|
||||||
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil H))
|
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil_iff H))
|
||||||
(take y l,
|
(take y l,
|
||||||
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
|
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
|
||||||
assume H : x ∈ y::l,
|
assume H : x ∈ y::l,
|
||||||
|
@ -252,7 +252,7 @@ assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂)
|
||||||
|
|
||||||
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
|
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
|
||||||
list.rec_on l
|
list.rec_on l
|
||||||
(decidable.inr (not_of_iff_false !mem_nil))
|
(decidable.inr (not_of_iff_false !mem_nil_iff))
|
||||||
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
||||||
show decidable (x ∈ h::l), from
|
show decidable (x ∈ h::l), from
|
||||||
decidable.rec_on iH
|
decidable.rec_on iH
|
||||||
|
@ -289,7 +289,7 @@ definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈
|
||||||
infix `⊆`:50 := sublist
|
infix `⊆`:50 := sublist
|
||||||
|
|
||||||
theorem nil_sub (l : list T) : [] ⊆ l :=
|
theorem nil_sub (l : list T) : [] ⊆ l :=
|
||||||
λ b i, false.elim (iff.mp (mem_nil b) i)
|
λ b i, false.elim (iff.mp (mem_nil_iff b) i)
|
||||||
|
|
||||||
theorem sub.refl (l : list T) : l ⊆ l :=
|
theorem sub.refl (l : list T) : l ⊆ l :=
|
||||||
λ b i, i
|
λ b i, i
|
||||||
|
|
Loading…
Reference in a new issue