chore(hott): delay lemmas about smash product until I have more ideas on how to tackle the coherence there.

This commit is contained in:
Jakob von Raumer 2016-02-02 18:45:52 +00:00 committed by Leonardo de Moura
parent 1042f6c29d
commit 62e1431f04
2 changed files with 41 additions and 16 deletions

View file

@ -232,6 +232,9 @@ namespace eq
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ := : p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
by induction s₁₁; apply idp by induction s₁₁; apply idp
definition square_of_eq_bot (r : p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ = p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₀; esimp at r; induction r; induction p₀₁; exact ids
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂) definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b := (l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
begin begin

View file

@ -8,7 +8,7 @@ The Smash Product of Types
import hit.pushout .wedge .cofiber .susp .sphere import hit.pushout .wedge .cofiber .susp .sphere
open eq pushout prod pointed Pointed open eq pushout prod pointed Pointed is_trunc
definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B := definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B :=
begin begin
@ -23,7 +23,30 @@ open sphere susp unit
namespace smash namespace smash
definition smash_bool (X : Type*) : Smash X Bool ≃* X := protected definition prec {X Y : Type*} {P : Smash X Y → Type}
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
(px (Point X)) (glue ⋆) (py (Point Y))) : Π s, P s :=
begin
intro s, induction s, induction x, exact ps,
induction x with [x, y], exact pxy x y,
induction x with [x, y, u], exact px x, exact py y,
induction u, exact pg,
end
protected definition prec_on {X Y : Type*} {P : Smash X Y → Type} (s : Smash X Y)
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
(px (Point X)) (glue ⋆) (py (Point Y))) : P s :=
smash.prec pxy ps px py pg s
/- definition smash_bool (X : Type*) : Smash X Bool ≃* X :=
begin begin
fconstructor, fconstructor,
{ fconstructor, { fconstructor,
@ -38,24 +61,23 @@ namespace smash
{ fapply is_equiv.adjointify, { fapply is_equiv.adjointify,
{ intro x, apply inr, exact pair x bool.tt }, { intro x, apply inr, exact pair x bool.tt },
{ intro x, reflexivity }, { intro x, reflexivity },
{ intro s, esimp, induction s, } } { intro s, esimp, induction s,
end { cases x, apply (glue (inr bool.tt))⁻¹ },
{ cases x with [x, b], cases b,
check ap_compose apply inverse, apply concat, apply (glue (inl x))⁻¹, apply (glue (inr bool.tt)),
reflexivity },
{ esimp, apply eq_pathover, induction x,
check bool.rec esimp, apply hinverse, krewrite ap_id, apply move_bot_of_left,
krewrite con.right_inv,
exit refine _ ⬝hp !(ap_compose (λ a, inr (pair a _)))⁻¹,
fconstructor, intro x, induction x, exact point X, apply transpose, apply square_of_eq_bot, rewrite [con_idp, con.left_inv],
induction a, exact point X, esimp, induction x, do 2 reflexivity, apply inverse, apply concat, apply ap (ap _),
apply eq_pathover, apply hdeg_square, induction x, -/ } } }
definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X := definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X :=
begin begin
fconstructor, fconstructor,
{ fconstructor, intro x, induction x, }, { fconstructor, intro x, induction x, },
end end-/
end smash end smash