chore(hott): delay lemmas about smash product until I have more ideas on how to tackle the coherence there.
This commit is contained in:
parent
1042f6c29d
commit
62e1431f04
2 changed files with 41 additions and 16 deletions
|
@ -232,6 +232,9 @@ namespace eq
|
||||||
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
|
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
|
||||||
by induction s₁₁; apply idp
|
by induction s₁₁; apply idp
|
||||||
|
|
||||||
|
definition square_of_eq_bot (r : p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ = p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
|
||||||
|
by induction p₂₁; induction p₁₀; esimp at r; induction r; induction p₀₁; exact ids
|
||||||
|
|
||||||
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
|
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
|
||||||
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
|
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
|
||||||
begin
|
begin
|
||||||
|
|
|
@ -8,7 +8,7 @@ The Smash Product of Types
|
||||||
|
|
||||||
import hit.pushout .wedge .cofiber .susp .sphere
|
import hit.pushout .wedge .cofiber .susp .sphere
|
||||||
|
|
||||||
open eq pushout prod pointed Pointed
|
open eq pushout prod pointed Pointed is_trunc
|
||||||
|
|
||||||
definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B :=
|
definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B :=
|
||||||
begin
|
begin
|
||||||
|
@ -23,7 +23,30 @@ open sphere susp unit
|
||||||
|
|
||||||
namespace smash
|
namespace smash
|
||||||
|
|
||||||
definition smash_bool (X : Type*) : Smash X Bool ≃* X :=
|
protected definition prec {X Y : Type*} {P : Smash X Y → Type}
|
||||||
|
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
|
||||||
|
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
|
||||||
|
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
|
||||||
|
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
|
||||||
|
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
|
||||||
|
(px (Point X)) (glue ⋆) (py (Point Y))) : Π s, P s :=
|
||||||
|
begin
|
||||||
|
intro s, induction s, induction x, exact ps,
|
||||||
|
induction x with [x, y], exact pxy x y,
|
||||||
|
induction x with [x, y, u], exact px x, exact py y,
|
||||||
|
induction u, exact pg,
|
||||||
|
end
|
||||||
|
|
||||||
|
protected definition prec_on {X Y : Type*} {P : Smash X Y → Type} (s : Smash X Y)
|
||||||
|
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
|
||||||
|
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
|
||||||
|
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
|
||||||
|
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
|
||||||
|
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
|
||||||
|
(px (Point X)) (glue ⋆) (py (Point Y))) : P s :=
|
||||||
|
smash.prec pxy ps px py pg s
|
||||||
|
|
||||||
|
/- definition smash_bool (X : Type*) : Smash X Bool ≃* X :=
|
||||||
begin
|
begin
|
||||||
fconstructor,
|
fconstructor,
|
||||||
{ fconstructor,
|
{ fconstructor,
|
||||||
|
@ -38,24 +61,23 @@ namespace smash
|
||||||
{ fapply is_equiv.adjointify,
|
{ fapply is_equiv.adjointify,
|
||||||
{ intro x, apply inr, exact pair x bool.tt },
|
{ intro x, apply inr, exact pair x bool.tt },
|
||||||
{ intro x, reflexivity },
|
{ intro x, reflexivity },
|
||||||
{ intro s, esimp, induction s, } }
|
{ intro s, esimp, induction s,
|
||||||
end
|
{ cases x, apply (glue (inr bool.tt))⁻¹ },
|
||||||
|
{ cases x with [x, b], cases b,
|
||||||
check ap_compose
|
apply inverse, apply concat, apply (glue (inl x))⁻¹, apply (glue (inr bool.tt)),
|
||||||
|
reflexivity },
|
||||||
|
{ esimp, apply eq_pathover, induction x,
|
||||||
check bool.rec
|
esimp, apply hinverse, krewrite ap_id, apply move_bot_of_left,
|
||||||
|
krewrite con.right_inv,
|
||||||
exit
|
refine _ ⬝hp !(ap_compose (λ a, inr (pair a _)))⁻¹,
|
||||||
fconstructor, intro x, induction x, exact point X,
|
apply transpose, apply square_of_eq_bot, rewrite [con_idp, con.left_inv],
|
||||||
induction a, exact point X, esimp, induction x, do 2 reflexivity,
|
apply inverse, apply concat, apply ap (ap _),
|
||||||
apply eq_pathover, apply hdeg_square, induction x, -/
|
} } }
|
||||||
|
|
||||||
|
|
||||||
definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X :=
|
definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X :=
|
||||||
begin
|
begin
|
||||||
fconstructor,
|
fconstructor,
|
||||||
{ fconstructor, intro x, induction x, },
|
{ fconstructor, intro x, induction x, },
|
||||||
end
|
end-/
|
||||||
|
|
||||||
end smash
|
end smash
|
||||||
|
|
Loading…
Reference in a new issue