refactor(library/algebra/field.lean): rename has_decidable_eq and declare instance
This commit is contained in:
parent
dfaeb475cc
commit
6359132b67
2 changed files with 44 additions and 46 deletions
|
@ -310,9 +310,11 @@ section field
|
|||
end field
|
||||
|
||||
structure discrete_field [class] (A : Type) extends field A :=
|
||||
(decidable_equality : ∀x y : A, decidable (x = y))
|
||||
(has_decidable_eq : decidable_eq A)
|
||||
(inv_zero : inv zero = zero)
|
||||
|
||||
attribute discrete_field.has_decidable_eq [instance]
|
||||
|
||||
section discrete_field
|
||||
variable [s : discrete_field A]
|
||||
include s
|
||||
|
@ -322,10 +324,6 @@ section discrete_field
|
|||
-- but with fewer hypotheses since 0⁻¹ = 0 and equality is decidable.
|
||||
-- they are named with '. Is there a better convention?
|
||||
|
||||
-- name clash with order
|
||||
definition decidable_eq' [instance] (a b : A) : decidable (a = b) :=
|
||||
@discrete_field.decidable_equality A s a b
|
||||
|
||||
theorem discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
|
||||
(x y : A) (H : x * y = 0) : x = 0 ∨ y = 0 :=
|
||||
decidable.by_cases
|
||||
|
|
|
@ -11,15 +11,15 @@ import algebra.ordered_ring algebra.field
|
|||
open eq eq.ops
|
||||
|
||||
namespace algebra
|
||||
|
||||
|
||||
structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A
|
||||
|
||||
section linear_ordered_field
|
||||
|
||||
|
||||
variable {A : Type}
|
||||
variables [s : linear_ordered_field A] {a b c d : A}
|
||||
include s
|
||||
|
||||
|
||||
-- helpers for following
|
||||
theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) :=
|
||||
calc
|
||||
|
@ -27,17 +27,17 @@ section linear_ordered_field
|
|||
... < 1 : zero_lt_one
|
||||
... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H))
|
||||
... = a * (1 / a) : inv_eq_one_div
|
||||
|
||||
|
||||
theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) :=
|
||||
calc
|
||||
a * 0 = 0 : mul_zero
|
||||
... < 1 : zero_lt_one
|
||||
... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H)
|
||||
... = a * (1 / a) : inv_eq_one_div
|
||||
|
||||
|
||||
theorem div_pos_of_pos (H : 0 < a) : 0 < 1 / a :=
|
||||
lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H)
|
||||
|
||||
|
||||
theorem div_neg_of_neg (H : a < 0) : 1 / a < 0 :=
|
||||
gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H)
|
||||
|
||||
|
@ -48,7 +48,7 @@ section linear_ordered_field
|
|||
theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a :=
|
||||
mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb)
|
||||
|
||||
theorem one_le_div_iff_le (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a :=
|
||||
theorem one_le_div_iff_le (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a :=
|
||||
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
||||
iff.intro
|
||||
(assume H : 1 ≤ a / b,
|
||||
|
@ -88,20 +88,20 @@ section linear_ordered_field
|
|||
theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b :=
|
||||
(iff.mp' (one_lt_div_iff_lt Hb)) H
|
||||
|
||||
theorem exists_lt : ∃ x, x < a :=
|
||||
theorem exists_lt : ∃ x, x < a :=
|
||||
have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one,
|
||||
exists.intro _ H
|
||||
|
||||
theorem exists_gt : ∃ x, x > a :=
|
||||
theorem exists_gt : ∃ x, x > a :=
|
||||
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
|
||||
exists.intro _ H
|
||||
|
||||
|
||||
-- the following theorems amount to four iffs, for <, ≤, ≥, >.
|
||||
-- the following theorems amount to four iffs, for <, ≤, ≥, >.
|
||||
|
||||
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
||||
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
||||
div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
||||
|
||||
|
||||
theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c :=
|
||||
calc
|
||||
a = a * c * (1 / c) : mul_mul_div (ne.symm (ne_of_lt Hc))
|
||||
|
@ -120,12 +120,12 @@ section linear_ordered_field
|
|||
theorem mul_le_of_ge_div_neg (Hc : c < 0) (H : a ≥ b / c) : a * c ≤ b :=
|
||||
div_mul_cancel (ne_of_lt Hc) ▸ mul_le_mul_of_nonpos_right H (le_of_lt Hc)
|
||||
|
||||
theorem ge_div_of_mul_le_neg (Hc : c < 0) (H : a * c ≤ b) : a ≥ b / c :=
|
||||
theorem ge_div_of_mul_le_neg (Hc : c < 0) (H : a * c ≤ b) : a ≥ b / c :=
|
||||
calc
|
||||
a = a * c * (1 / c) : mul_mul_div (ne_of_lt Hc)
|
||||
... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right H (le_of_lt (div_neg_of_neg Hc))
|
||||
... = b / c : div_eq_mul_one_div
|
||||
|
||||
|
||||
theorem mul_lt_of_gt_div_neg (Hc : c < 0) (H : a > b / c) : a * c < b :=
|
||||
div_mul_cancel (ne_of_lt Hc) ▸ mul_lt_mul_of_neg_right H Hc
|
||||
|
||||
|
@ -158,16 +158,16 @@ section linear_ordered_field
|
|||
... = (a * d - c * b) / (c * d) : div_sub_div Hc Hd
|
||||
... = (a * d - b * c) / (c * d) : mul.comm
|
||||
|
||||
theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0)
|
||||
theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0)
|
||||
(H : (a * d - b * c) / (c * d) < 0) : a / c < b / d :=
|
||||
have H1 : (a * d - c * b) / (c * d) < 0, from !mul.comm ▸ H,
|
||||
have H1 : (a * d - c * b) / (c * d) < 0, from !mul.comm ▸ H,
|
||||
have H2 : a / c - b / d < 0, from (div_sub_div Hc Hd)⁻¹ ▸ H1,
|
||||
have H3 [visible] : a / c - b / d + b / d < 0 + b / d, from add_lt_add_right H2 _,
|
||||
begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end
|
||||
|
||||
theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0)
|
||||
theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0)
|
||||
(H : (a * d - b * c) / (c * d) ≤ 0) : a / c ≤ b / d :=
|
||||
have H1 : (a * d - c * b) / (c * d) ≤ 0, from !mul.comm ▸ H,
|
||||
have H1 : (a * d - c * b) / (c * d) ≤ 0, from !mul.comm ▸ H,
|
||||
have H2 : a / c - b / d ≤ 0, from (div_sub_div Hc Hd)⁻¹ ▸ H1,
|
||||
have H3 [visible] : a / c - b / d + b / d ≤ 0 + b / d, from add_le_add_right H2 _,
|
||||
begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end
|
||||
|
@ -181,7 +181,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem nonneg_div_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b :=
|
||||
theorem nonneg_div_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_nonneg,
|
||||
|
@ -191,7 +191,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem neg_div_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:=
|
||||
theorem neg_div_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_neg_of_neg_of_pos,
|
||||
|
@ -200,7 +200,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem nonpos_div_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 :=
|
||||
theorem nonpos_div_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_nonpos_of_nonpos_of_nonneg,
|
||||
|
@ -210,7 +210,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem neg_div_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 :=
|
||||
theorem neg_div_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_neg_of_pos_of_neg,
|
||||
|
@ -219,7 +219,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem nonpos_div_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 :=
|
||||
theorem nonpos_div_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_nonpos_of_nonneg_of_nonpos,
|
||||
|
@ -229,7 +229,7 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem pos_div_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b :=
|
||||
theorem pos_div_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_pos_of_neg_of_neg,
|
||||
|
@ -237,9 +237,9 @@ section linear_ordered_field
|
|||
apply div_neg_of_neg,
|
||||
exact Hb
|
||||
end
|
||||
|
||||
|
||||
theorem nonneg_div_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b :=
|
||||
|
||||
theorem nonneg_div_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b :=
|
||||
begin
|
||||
rewrite div_eq_mul_one_div,
|
||||
apply mul_nonneg_of_nonpos_of_nonpos,
|
||||
|
@ -249,13 +249,13 @@ section linear_ordered_field
|
|||
exact Hb
|
||||
end
|
||||
|
||||
theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c :=
|
||||
theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c :=
|
||||
div_eq_mul_one_div⁻¹ ▸ div_eq_mul_one_div⁻¹ ▸ mul_lt_mul_of_pos_right H (div_pos_of_pos Hc)
|
||||
|
||||
theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c :=
|
||||
theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c :=
|
||||
div_eq_mul_one_div⁻¹ ▸ div_eq_mul_one_div⁻¹ ▸ mul_lt_mul_of_neg_right H (div_neg_of_neg Hc)
|
||||
|
||||
|
||||
|
||||
end linear_ordered_field
|
||||
|
||||
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,
|
||||
|
@ -263,36 +263,36 @@ structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordere
|
|||
(inv_zero : inv zero = zero)
|
||||
|
||||
section discrete_linear_ordered_field
|
||||
|
||||
|
||||
variable {A : Type}
|
||||
variables [s : discrete_linear_ordered_field A] {a b c : A}
|
||||
include s
|
||||
|
||||
|
||||
theorem dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) :=
|
||||
theorem dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) :=
|
||||
take x y,
|
||||
decidable.by_cases
|
||||
(assume H : x < y, decidable.inr (ne_of_lt H))
|
||||
(assume H : ¬ x < y,
|
||||
decidable.by_cases
|
||||
(assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H')))
|
||||
(assume H' : ¬ y < x,
|
||||
(assume H' : ¬ y < x,
|
||||
decidable.inl (le.antisymm (le_of_not_lt H') (le_of_not_lt H))))
|
||||
|
||||
definition discrete_linear_ordered_field.to_discrete_field [instance] [reducible] [coercion]
|
||||
[s : discrete_linear_ordered_field A] : discrete_field A :=
|
||||
⦃ discrete_field, s, decidable_equality := dec_eq_of_dec_lt⦄
|
||||
⦃ discrete_field, s, has_decidable_eq := dec_eq_of_dec_lt⦄
|
||||
|
||||
theorem pos_of_div_pos (H : 0 < 1 / a) : 0 < a :=
|
||||
have H1 : 0 < 1 / (1 / a), from div_pos_of_pos H,
|
||||
have H2 : 1 / a ≠ 0, from
|
||||
have H2 : 1 / a ≠ 0, from
|
||||
(assume H3 : 1 / a = 0,
|
||||
have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ div_zero,
|
||||
absurd H4 (ne.symm (ne_of_lt H1))),
|
||||
(div_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1
|
||||
|
||||
theorem neg_of_div_neg (H : 1 / a < 0) : a < 0 :=
|
||||
have H1 : 0 < - (1 / a), from neg_pos_of_neg H,
|
||||
have H1 : 0 < - (1 / a), from neg_pos_of_neg H,
|
||||
have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H),
|
||||
have H2 : 0 < 1 / (-a), from (one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1,
|
||||
have H3 : 0 < -a, from pos_of_div_pos H2,
|
||||
|
@ -308,8 +308,8 @@ section discrete_linear_ordered_field
|
|||
... = a * (1 / a) : div_eq_mul_one_div
|
||||
... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H)
|
||||
... = a / b : div_eq_mul_one_div
|
||||
), le_of_one_le_div Hb H'
|
||||
|
||||
), le_of_one_le_div Hb H'
|
||||
|
||||
|
||||
theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
||||
have Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc
|
||||
|
@ -339,17 +339,17 @@ section discrete_linear_ordered_field
|
|||
have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl),
|
||||
have Hn : b ≠ a, from
|
||||
(assume Hn' : b = a,
|
||||
have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _,
|
||||
have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _,
|
||||
absurd Hl' (ne_of_lt Hl)),
|
||||
lt_of_le_of_ne H1 Hn
|
||||
|
||||
|
||||
theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
|
||||
theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
|
||||
lt_of_not_le
|
||||
(assume H',
|
||||
absurd H (not_lt_of_le (le_of_div_le Ha H')))
|
||||
absurd H (not_lt_of_le (le_of_div_le Ha H')))
|
||||
|
||||
theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
||||
theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
||||
le_of_not_lt
|
||||
(assume H',
|
||||
absurd H (not_le_of_lt (lt_of_div_lt Ha H')))
|
||||
|
|
Loading…
Reference in a new issue