feat(library/data/list/set): cleanup nodup_map proof

This commit is contained in:
Leonardo de Moura 2015-06-04 15:21:40 -07:00
parent 9a7cff0e89
commit 63f61a35f4

View file

@ -275,7 +275,7 @@ have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)), have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂ nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
theorem nodup_map {f : A → B} (inj : has_left_inverse f) : ∀ {l : list A}, nodup l → nodup (map f l) theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
| [] n := begin rewrite [map_nil], apply nodup_nil end | [] n := begin rewrite [map_nil], apply nodup_nil end
| (x::xs) n := | (x::xs) n :=
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n, assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
@ -283,15 +283,9 @@ theorem nodup_map {f : A → B} (inj : has_left_inverse f) : ∀ {l : list A}, n
assert ndmfxs : nodup (map f xs), from nodup_map ndxs, assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
assert nfxinm : f x ∉ map f xs, from assert nfxinm : f x ∉ map f xs, from
λ ab : f x ∈ map f xs, λ ab : f x ∈ map f xs,
obtain (finv : B → A) (isinv : left_inverse finv f), from inj, obtain (y : A) (yinxs : y ∈ xs) (fyfx : f y = f x), from exists_of_mem_map ab,
assert finvfxin : finv (f x) ∈ map finv (map f xs), from mem_map finv ab, assert yeqx : y = x, from inj fyfx,
assert xinxs : x ∈ xs, by subst y; contradiction,
begin
rewrite [map_map at finvfxin, isinv at finvfxin],
krewrite [map_id' isinv at finvfxin],
exact finvfxin
end,
absurd xinxs nxinxs,
nodup_cons nfxinm ndmfxs nodup_cons nfxinm ndmfxs
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l) theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)