diff --git a/tests/lean/run/coe6.lean b/tests/lean/run/coe6.lean new file mode 100644 index 000000000..b97f520a7 --- /dev/null +++ b/tests/lean/run/coe6.lean @@ -0,0 +1,15 @@ +import data.unit +open unit + +variable int : Type.{1} +variable nat : Type.{1} +variable izero : int +variable nzero : nat +variable isucc : int → int +variable nsucc : nat → nat +definition f [coercion] (a : unit) : int := izero +definition g [coercion] (a : unit) : nat := nzero + +set_option pp.coercion true +check isucc star +check nsucc star diff --git a/tests/lean/run/coe8.lean b/tests/lean/run/coe8.lean new file mode 100644 index 000000000..93b8c2da0 --- /dev/null +++ b/tests/lean/run/coe8.lean @@ -0,0 +1,16 @@ +import logic + +variable nat : Type.{1} +variable int : Type.{1} +variable of_nat : nat → int +coercion of_nat +variable nat_add : nat → nat → nat +variable int_add : int → int → int +infixl `+`:65 := int_add +infixl `+`:65 := nat_add + +print "================" +variable tst (n m : nat) : @eq int (of_nat n + of_nat m) (n + m) + +check tst +exit diff --git a/tests/lean/run/ex.lean b/tests/lean/run/ex.lean new file mode 100644 index 000000000..6bad54d9b --- /dev/null +++ b/tests/lean/run/ex.lean @@ -0,0 +1,3 @@ +import standard +set_option pp.implicit true +check ∃x, x = 0 \ No newline at end of file diff --git a/tests/lean/run/protected.lean b/tests/lean/run/protected.lean new file mode 100644 index 000000000..72457ab52 --- /dev/null +++ b/tests/lean/run/protected.lean @@ -0,0 +1,10 @@ +import logic + +namespace foo + definition C [protected] := true + definition D := true +end foo + +open foo +check foo.C +check D diff --git a/tests/lean/run/t3.lean b/tests/lean/run/t3.lean new file mode 100644 index 000000000..4cbddd8f4 --- /dev/null +++ b/tests/lean/run/t3.lean @@ -0,0 +1,22 @@ +variable int : Type.{1} +variable nat : Type.{1} +namespace int +variable plus : int → int → int +end int + +namespace nat +variable plus : nat → nat → nat +end nat + +open int nat + +variables a b : int + + +check plus a b + +variable f : int → int → int +variable g : nat → nat → int +notation A `+`:65 B:65 := f A (g B B) +variable n : nat +check a + n diff --git a/tests/lean/run/tac1.lean b/tests/lean/run/tac1.lean new file mode 100644 index 000000000..47e648b3c --- /dev/null +++ b/tests/lean/run/tac1.lean @@ -0,0 +1,6 @@ +import tools.tactic +open tactic + +definition mytac := apply @and_intro; apply @refl + +check @mytac diff --git a/tests/lean/run/tt1.lean b/tests/lean/run/tt1.lean new file mode 100644 index 000000000..4753423a5 --- /dev/null +++ b/tests/lean/run/tt1.lean @@ -0,0 +1,8 @@ +import data.prod data.num logic.core.quantifiers +open prod + +check (true, false, 10) + +-- definition a f := f + +check fun x, x ∧ x diff --git a/tests/lean/slow/nat_bug1.lean b/tests/lean/slow/nat_bug1.lean new file mode 100644 index 000000000..a571458fe --- /dev/null +++ b/tests/lean/slow/nat_bug1.lean @@ -0,0 +1,23 @@ +---------------------------------------------------------------------------------------------------- +-- Copyright (c) 2014 Floris van Doorn. All rights reserved. +-- Released under Apache 2.0 license as described in the file LICENSE. +-- Author: Floris van Doorn +---------------------------------------------------------------------------------------------------- +import logic +open tactic num + +inductive nat : Type := +zero : nat, +succ : nat → nat + +notation `ℕ`:max := nat + +abbreviation plus (x y : ℕ) : ℕ +:= nat_rec x (λ n r, succ r) y + +definition to_nat [coercion] [inline] (n : num) : ℕ +:= num_rec zero (λ n, pos_num_rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n + +print "==================" +theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x := +refl _ diff --git a/tests/lean/slow/nat_bug2.lean b/tests/lean/slow/nat_bug2.lean new file mode 100644 index 000000000..925eeb164 --- /dev/null +++ b/tests/lean/slow/nat_bug2.lean @@ -0,0 +1,1412 @@ +---------------------------------------------------------------------------------------------------- +-- Copyright (c) 2014 Floris van Doorn. All rights reserved. +-- Released under Apache 2.0 license as described in the file LICENSE. +-- Author: Floris van Doorn +---------------------------------------------------------------------------------------------------- +import logic struc.binary +open tactic num binary eq_ops +open decidable + +namespace nat +inductive nat : Type := +zero : nat, +succ : nat → nat + +notation `ℕ`:max := nat + +abbreviation plus (x y : ℕ) : ℕ +:= nat_rec x (λ n r, succ r) y + +definition to_nat [coercion] [inline] (n : num) : ℕ +:= num_rec zero (λ n, pos_num_rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n + +namespace helper_tactics + definition apply_refl := apply @refl + tactic_hint apply_refl +end helper_tactics +open helper_tactics + +theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x + +theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat_rec x f (succ n) = f n (nat_rec x f n) + +theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a +:= nat_rec H1 H2 a + +definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P 0) (H2 : ∀m, P m → P (succ m)) : P n +:= nat_rec H1 H2 n + +-------------------------------------------------- succ pred + +theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 +:= assume H : succ n = 0, + have H2 : true = false, from + let f := (nat_rec false (fun a b, true)) in + calc true = f (succ n) : _ + ... = f 0 : {H} + ... = false : _, + absurd H2 true_ne_false + +definition pred (n : ℕ) := nat_rec 0 (fun m x, m) n + +theorem pred_zero : pred 0 = 0 + +theorem pred_succ (n : ℕ) : pred (succ n) = n + +theorem zero_or_succ (n : ℕ) : n = 0 ∨ n = succ (pred n) +:= induction_on n + (or_intro_left _ (refl 0)) + (take m IH, or_intro_right _ + (show succ m = succ (pred (succ m)), from congr_arg succ (pred_succ m⁻¹))) + +theorem zero_or_succ2 (n : ℕ) : n = 0 ∨ ∃k, n = succ k +:= or_imp_or (zero_or_succ n) (assume H, H) (assume H : n = succ (pred n), exists_intro (pred n) H) + +theorem case {P : ℕ → Prop} (n : ℕ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n +:= induction_on n H1 (take m IH, H2 m) + +theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B +:= or_elim (zero_or_succ n) + (take H3 : n = 0, H1 H3) + (take H3 : n = succ (pred n), H2 (pred n) H3) + +theorem succ_inj {n m : ℕ} (H : succ n = succ m) : n = m +:= calc + n = pred (succ n) : pred_succ n⁻¹ + ... = pred (succ m) : {H} + ... = m : pred_succ m + +theorem succ_ne_self (n : ℕ) : succ n ≠ n +:= induction_on n + (take H : 1 = 0, + have ne : 1 ≠ 0, from succ_ne_zero 0, + absurd H ne) + (take k IH H, IH (succ_inj H)) + +theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m) +:= have general : ∀n, decidable (n = m), from + rec_on m + (take n, + rec_on n + (inl (refl 0)) + (λ m iH, inr (succ_ne_zero m))) + (λ (m' : ℕ) (iH1 : ∀n, decidable (n = m')), + take n, rec_on n + (inr (ne_symm (succ_ne_zero m'))) + (λ (n' : ℕ) (iH2 : decidable (n' = succ m')), + have d1 : decidable (n' = m'), from iH1 n', + decidable.rec_on d1 + (assume Heq : n' = m', inl (congr_arg succ Heq)) + (assume Hne : n' ≠ m', + have H1 : succ n' ≠ succ m', from + assume Heq, absurd (succ_inj Heq) Hne, + inr H1))), + general n + +theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1) + (H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a +:= have stronger : P a ∧ P (succ a), from + induction_on a + (and_intro H1 H2) + (take k IH, + have IH1 : P k, from and_elim_left IH, + have IH2 : P (succ k), from and_elim_right IH, + and_intro IH2 (H3 k IH1 IH2)), + and_elim_left stronger + +theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m) + (H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m +:= have general : ∀m, P n m, from induction_on n + (take m : ℕ, H1 m) + (take k : ℕ, + assume IH : ∀m, P k m, + take m : ℕ, + discriminate + (assume Hm : m = 0, + Hm⁻¹ ▸ (H2 k)) + (take l : ℕ, + assume Hm : m = succ l, + Hm⁻¹ ▸ (H3 k l (IH l)))), + general m + +-------------------------------------------------- add +definition add (x y : ℕ) : ℕ := plus x y +infixl `+`:65 := add +theorem add_zero_right (n : ℕ) : n + 0 = n +theorem add_succ_right (n m : ℕ) : n + succ m = succ (n + m) +---------- comm, assoc + +theorem add_zero_left (n : ℕ) : 0 + n = n +:= induction_on n + (add_zero_right 0) + (take m IH, show 0 + succ m = succ m, from + calc + 0 + succ m = succ (0 + m) : add_succ_right _ _ + ... = succ m : {IH}) + +theorem add_succ_left (n m : ℕ) : (succ n) + m = succ (n + m) +:= induction_on m + (calc + succ n + 0 = succ n : add_zero_right (succ n) + ... = succ (n + 0) : {symm (add_zero_right n)}) + (take k IH, + calc + succ n + succ k = succ (succ n + k) : add_succ_right _ _ + ... = succ (succ (n + k)) : {IH} + ... = succ (n + succ k) : {symm (add_succ_right _ _)}) + +theorem add_comm (n m : ℕ) : n + m = m + n +:= induction_on m + (trans (add_zero_right _) (symm (add_zero_left _))) + (take k IH, + calc + n + succ k = succ (n+k) : add_succ_right _ _ + ... = succ (k + n) : {IH} + ... = succ k + n : symm (add_succ_left _ _)) + +theorem add_move_succ (n m : ℕ) : succ n + m = n + succ m +:= calc + succ n + m = succ (n + m) : add_succ_left n m + ... = n +succ m : symm (add_succ_right n m) + +theorem add_comm_succ (n m : ℕ) : n + succ m = m + succ n +:= calc + n + succ m = succ n + m : symm (add_move_succ n m) + ... = m + succ n : add_comm (succ n) m + +theorem add_assoc (n m k : ℕ) : (n + m) + k = n + (m + k) +:= induction_on k + (calc + (n + m) + 0 = n + m : add_zero_right _ + ... = n + (m + 0) : {symm (add_zero_right m)}) + (take l IH, + calc + (n + m) + succ l = succ ((n + m) + l) : add_succ_right _ _ + ... = succ (n + (m + l)) : {IH} + ... = n + succ (m + l) : symm (add_succ_right _ _) + ... = n + (m + succ l) : {symm (add_succ_right _ _)}) + +theorem add_left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) +:= left_comm add_comm add_assoc n m k + +theorem add_right_comm (n m k : ℕ) : n + m + k = n + k + m +:= right_comm add_comm add_assoc n m k + + +---------- inversion + +theorem add_cancel_left {n m k : ℕ} : n + m = n + k → m = k +:= + induction_on n + (take H : 0 + m = 0 + k, + calc + m = 0 + m : symm (add_zero_left m) + ... = 0 + k : H + ... = k : add_zero_left k) + (take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k), + have H2 : succ (n + m) = succ (n + k), + from calc + succ (n + m) = succ n + m : symm (add_succ_left n m) + ... = succ n + k : H + ... = succ (n + k) : add_succ_left n k, + have H3 : n + m = n + k, from succ_inj H2, + IH H3) + +--rename to and_cancel_right +theorem add_cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k +:= + have H2 : m + n = m + k, + from calc + m + n = n + m : add_comm m n + ... = k + m : H + ... = m + k : add_comm k m, + add_cancel_left H2 + +theorem add_eq_zero_left {n m : ℕ} : n + m = 0 → n = 0 +:= + induction_on n + (take (H : 0 + m = 0), refl 0) + (take k IH, + assume (H : succ k + m = 0), + absurd + (show succ (k + m) = 0, from + calc + succ (k + m) = succ k + m : symm (add_succ_left k m) + ... = 0 : H) + (succ_ne_zero (k + m))) + +theorem add_eq_zero_right {n m : ℕ} (H : n + m = 0) : m = 0 +:= add_eq_zero_left (trans (add_comm m n) H) + +theorem add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 +:= and_intro (add_eq_zero_left H) (add_eq_zero_right H) + +-- add_eq_self below + +---------- misc + +theorem add_one (n:ℕ) : n + 1 = succ n +:= + calc + n + 1 = succ (n + 0) : add_succ_right _ _ + ... = succ n : {add_zero_right _} + +theorem add_one_left (n:ℕ) : 1 + n = succ n +:= + calc + 1 + n = succ (0 + n) : add_succ_left _ _ + ... = succ n : {add_zero_left _} + +--the following theorem has a terrible name, but since the name is not a substring or superstring of another name, it is at least easy to globally replace it +theorem induction_plus_one {P : ℕ → Prop} (a : ℕ) (H1 : P 0) + (H2 : ∀ (n : ℕ) (IH : P n), P (n + 1)) : P a +:= nat_rec H1 (take n IH, (add_one n) ▸ (H2 n IH)) a + +-------------------------------------------------- mul + +definition mul (n m : ℕ) := nat_rec 0 (fun m x, x + n) m +infixl `*`:75 := mul + +theorem mul_zero_right (n:ℕ) : n * 0 = 0 +theorem mul_succ_right (n m:ℕ) : n * succ m = n * m + n +set_option unifier.max_steps 100000 +---------- comm, distr, assoc, identity + +theorem mul_zero_left (n:ℕ) : 0 * n = 0 +:= induction_on n + (mul_zero_right 0) + (take m IH, + calc + 0 * succ m = 0 * m + 0 : mul_succ_right _ _ + ... = 0 * m : add_zero_right _ + ... = 0 : IH) + +theorem mul_succ_left (n m:ℕ) : (succ n) * m = (n * m) + m +:= induction_on m + (calc + succ n * 0 = 0 : mul_zero_right _ + ... = n * 0 : symm (mul_zero_right _) + ... = n * 0 + 0 : symm (add_zero_right _)) + (take k IH, + calc + succ n * succ k = (succ n * k) + succ n : mul_succ_right _ _ + ... = (n * k) + k + succ n : { IH } + ... = (n * k) + (k + succ n) : add_assoc _ _ _ + ... = (n * k) + (n + succ k) : {add_comm_succ _ _} + ... = (n * k) + n + succ k : symm (add_assoc _ _ _) + ... = (n * succ k) + succ k : {symm (mul_succ_right n k)}) + +theorem mul_comm (n m:ℕ) : n * m = m * n +:= induction_on m + (trans (mul_zero_right _) (symm (mul_zero_left _))) + (take k IH, + calc + n * succ k = n * k + n : mul_succ_right _ _ + ... = k * n + n : {IH} + ... = (succ k) * n : symm (mul_succ_left _ _)) + +theorem mul_add_distr_left (n m k : ℕ) : (n + m) * k = n * k + m * k +:= induction_on k + (calc + (n + m) * 0 = 0 : mul_zero_right _ + ... = 0 + 0 : symm (add_zero_right _) + ... = n * 0 + 0 : refl _ + ... = n * 0 + m * 0 : refl _) + (take l IH, calc + (n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right _ _ + ... = n * l + m * l + (n + m) : {IH} + ... = n * l + m * l + n + m : symm (add_assoc _ _ _) + ... = n * l + n + m * l + m : {add_right_comm _ _ _} + ... = n * l + n + (m * l + m) : add_assoc _ _ _ + ... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)} + ... = n * succ l + m * succ l : {symm (mul_succ_right _ _)}) + +theorem mul_add_distr_right (n m k : ℕ) : n * (m + k) = n * m + n * k +:= calc + n * (m + k) = (m + k) * n : mul_comm _ _ + ... = m * n + k * n : mul_add_distr_left _ _ _ + ... = n * m + k * n : {mul_comm _ _} + ... = n * m + n * k : {mul_comm _ _} + +theorem mul_assoc (n m k:ℕ) : (n * m) * k = n * (m * k) +:= induction_on k + (calc + (n * m) * 0 = 0 : mul_zero_right _ + ... = n * 0 : symm (mul_zero_right _) + ... = n * (m * 0) : {symm (mul_zero_right _)}) + (take l IH, + calc + (n * m) * succ l = (n * m) * l + n * m : mul_succ_right _ _ + ... = n * (m * l) + n * m : {IH} + ... = n * (m * l + m) : symm (mul_add_distr_right _ _ _) + ... = n * (m * succ l) : {symm (mul_succ_right _ _)}) + +theorem mul_comm_left (n m k : ℕ) : n * (m * k) = m * (n * k) +:= left_comm mul_comm mul_assoc n m k + +theorem mul_comm_right (n m k : ℕ) : n * m * k = n * k * m +:= right_comm mul_comm mul_assoc n m k + +theorem mul_one_right (n : ℕ) : n * 1 = n +:= calc + n * 1 = n * 0 + n : mul_succ_right n 0 + ... = 0 + n : {mul_zero_right n} + ... = n : add_zero_left n + +theorem mul_one_left (n : ℕ) : 1 * n = n +:= calc + 1 * n = n * 1 : mul_comm _ _ + ... = n : mul_one_right n + +---------- inversion + +theorem mul_eq_zero {n m : ℕ} (H : n * m = 0) : n = 0 ∨ m = 0 +:= + discriminate + (take Hn : n = 0, or_intro_left _ Hn) + (take (k : ℕ), + assume (Hk : n = succ k), + discriminate + (take (Hm : m = 0), or_intro_right _ Hm) + (take (l : ℕ), + assume (Hl : m = succ l), + have Heq : succ (k * succ l + l) = n * m, from + symm (calc + n * m = n * succ l : { Hl } + ... = succ k * succ l : { Hk } + ... = k * succ l + succ l : mul_succ_left _ _ + ... = succ (k * succ l + l) : add_succ_right _ _), + absurd (trans Heq H) (succ_ne_zero _))) + +-- see more under "positivity" below +-------------------------------------------------- le + +definition le (n m:ℕ) : Prop := ∃k, n + k = m +infix `<=`:50 := le +infix `≤`:50 := le + +theorem le_intro {n m k : ℕ} (H : n + k = m) : n ≤ m +:= exists_intro k H + +theorem le_elim {n m : ℕ} (H : n ≤ m) : ∃ k, n + k = m +:= H + +---------- partial order (totality is part of lt) + +theorem le_intro2 (n m : ℕ) : n ≤ n + m +:= le_intro (refl (n + m)) + +theorem le_refl (n : ℕ) : n ≤ n +:= le_intro (add_zero_right n) + +theorem zero_le (n : ℕ) : 0 ≤ n +:= le_intro (add_zero_left n) + +theorem le_zero {n : ℕ} (H : n ≤ 0) : n = 0 +:= + obtain (k : ℕ) (Hk : n + k = 0), from le_elim H, + add_eq_zero_left Hk + +theorem not_succ_zero_le (n : ℕ) : ¬ succ n ≤ 0 +:= assume H : succ n ≤ 0, + have H2 : succ n = 0, from le_zero H, + absurd H2 (succ_ne_zero n) + +theorem le_zero_inv {n : ℕ} (H : n ≤ 0) : n = 0 +:= obtain (k : ℕ) (Hk : n + k = 0), from le_elim H, + add_eq_zero_left Hk + +theorem le_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k +:= obtain (l1 : ℕ) (Hl1 : n + l1 = m), from le_elim H1, + obtain (l2 : ℕ) (Hl2 : m + l2 = k), from le_elim H2, + le_intro + (calc + n + (l1 + l2) = n + l1 + l2 : symm (add_assoc n l1 l2) + ... = m + l2 : { Hl1 } + ... = k : Hl2) + +theorem le_antisym {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m +:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H1), + obtain (l : ℕ) (Hl : m + l = n), from (le_elim H2), + have L1 : k + l = 0, from + add_cancel_left + (calc + n + (k + l) = n + k + l : { symm (add_assoc n k l) } + ... = m + l : { Hk } + ... = n : Hl + ... = n + 0 : symm (add_zero_right n)), + have L2 : k = 0, from add_eq_zero_left L1, + calc + n = n + 0 : symm (add_zero_right n) + ... = n + k : { symm L2 } + ... = m : Hk + +---------- interaction with add + +theorem add_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m +:= obtain (l : ℕ) (Hl : n + l = m), from (le_elim H), + le_intro + (calc + k + n + l = k + (n + l) : add_assoc k n l + ... = k + m : { Hl }) + +theorem add_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k +:= (add_comm k m) ▸ (add_comm k n) ▸ (add_le_left H k) + +theorem add_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n + m ≤ k + l +:= le_trans (add_le_right H1 m) (add_le_left H2 k) + +theorem add_le_left_inv {n m k : ℕ} (H : k + n ≤ k + m) : n ≤ m +:= + obtain (l : ℕ) (Hl : k + n + l = k + m), from (le_elim H), + le_intro (add_cancel_left + (calc + k + (n + l) = k + n + l : symm (add_assoc k n l) + ... = k + m : Hl)) + +theorem add_le_right_inv {n m k : ℕ} (H : n + k ≤ m + k) : n ≤ m +:= add_le_left_inv (add_comm m k ▸ add_comm n k ▸ H) + +---------- interaction with succ and pred + +theorem succ_le {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m +:= add_one m ▸ add_one n ▸ add_le_right H 1 + +theorem succ_le_cancel {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m +:= add_le_right_inv (add_one m⁻¹ ▸ add_one n⁻¹ ▸ H) + +theorem self_le_succ (n : ℕ) : n ≤ succ n +:= le_intro (add_one n) + +theorem le_imp_le_succ {n m : ℕ} (H : n ≤ m) : n ≤ succ m +:= le_trans H (self_le_succ m) + +theorem succ_le_left_or {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m +:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H), + discriminate + (assume H3 : k = 0, + have Heq : n = m, + from calc + n = n + 0 : (add_zero_right n)⁻¹ + ... = n + k : {H3⁻¹} + ... = m : Hk, + or_intro_right _ Heq) + (take l:ℕ, + assume H3 : k = succ l, + have Hlt : succ n ≤ m, from + (le_intro + (calc + succ n + l = n + succ l : add_move_succ n l + ... = n + k : {H3⁻¹} + ... = m : Hk)), + or_intro_left _ Hlt) + +theorem succ_le_left {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m +:= resolve_left (succ_le_left_or H1) H2 + +theorem succ_le_right_inv {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m +:= or_imp_or (succ_le_left_or H) + (take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2) + (take H2 : n = succ m, H2) + +theorem succ_le_left_inv {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m +:= obtain (k : ℕ) (H2 : succ n + k = m), from (le_elim H), + and_intro + (have H3 : n + succ k = m, + from calc + n + succ k = succ n + k : symm (add_move_succ n k) + ... = m : H2, + show n ≤ m, from le_intro H3) + (assume H3 : n = m, + have H4 : succ n ≤ n, from subst (symm H3) H, + have H5 : succ n = n, from le_antisym H4 (self_le_succ n), + show false, from absurd H5 (succ_ne_self n)) + +theorem le_pred_self (n : ℕ) : pred n ≤ n +:= case n + (subst (symm pred_zero) (le_refl 0)) + (take k : ℕ, subst (symm (pred_succ k)) (self_le_succ k)) + +theorem pred_le {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m +:= discriminate + (take Hn : n = 0, + have H2 : pred n = 0, + from calc + pred n = pred 0 : {Hn} + ... = 0 : pred_zero, + subst (symm H2) (zero_le (pred m))) + (take k : ℕ, + assume Hn : n = succ k, + obtain (l : ℕ) (Hl : n + l = m), from le_elim H, + have H2 : pred n + l = pred m, + from calc + pred n + l = pred (succ k) + l : {Hn} + ... = k + l : {pred_succ k} + ... = pred (succ (k + l)) : symm (pred_succ (k + l)) + ... = pred (succ k + l) : {symm (add_succ_left k l)} + ... = pred (n + l) : {symm Hn} + ... = pred m : {Hl}, + le_intro H2) + +theorem pred_le_left_inv {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m +:= discriminate + (take Hn : n = 0, + or_intro_left _ (subst (symm Hn) (zero_le m))) + (take k : ℕ, + assume Hn : n = succ k, + have H2 : pred n = k, + from calc + pred n = pred (succ k) : {Hn} + ... = k : pred_succ k, + have H3 : k ≤ m, from subst H2 H, + have H4 : succ k ≤ m ∨ k = m, from succ_le_left_or H3, + show n ≤ m ∨ n = succ m, from + or_imp_or H4 + (take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5) + (take H5 : k = m, show n = succ m, from subst H5 Hn)) + +-- ### interaction with successor and predecessor + +theorem le_imp_succ_le_or_eq {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m +:= + obtain (k : ℕ) (Hk : n + k = m), from (le_elim H), + discriminate + (assume H3 : k = 0, + have Heq : n = m, + from calc + n = n + 0 : symm (add_zero_right n) + ... = n + k : {symm H3} + ... = m : Hk, + or_intro_right _ Heq) + (take l : nat, + assume H3 : k = succ l, + have Hlt : succ n ≤ m, from + (le_intro + (calc + succ n + l = n + succ l : add_move_succ n l + ... = n + k : {symm H3} + ... = m : Hk)), + or_intro_left _ Hlt) + +theorem le_ne_imp_succ_le {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m +:= resolve_left (le_imp_succ_le_or_eq H1) H2 + +theorem succ_le_imp_le_and_ne {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m +:= + and_intro + (le_trans (self_le_succ n) H) + (assume H2 : n = m, + have H3 : succ n ≤ n, from subst (symm H2) H, + have H4 : succ n = n, from le_antisym H3 (self_le_succ n), + show false, from absurd H4 (succ_ne_self n)) + +theorem pred_le_self (n : ℕ) : pred n ≤ n +:= + case n + (subst (symm pred_zero) (le_refl 0)) + (take k : nat, subst (symm (pred_succ k)) (self_le_succ k)) + +theorem pred_le_imp_le_or_eq {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m +:= + discriminate + (take Hn : n = 0, + or_intro_left _ (subst (symm Hn) (zero_le m))) + (take k : nat, + assume Hn : n = succ k, + have H2 : pred n = k, + from calc + pred n = pred (succ k) : {Hn} + ... = k : pred_succ k, + have H3 : k ≤ m, from subst H2 H, + have H4 : succ k ≤ m ∨ k = m, from le_imp_succ_le_or_eq H3, + show n ≤ m ∨ n = succ m, from + or_imp_or H4 + (take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5) + (take H5 : k = m, show n = succ m, from subst H5 Hn)) + +---------- interaction with mul + +theorem mul_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m +:= + obtain (l : ℕ) (Hl : n + l = m), from (le_elim H), + induction_on k + (have H2 : 0 * n = 0 * m, + from calc + 0 * n = 0 : mul_zero_left n + ... = 0 * m : symm (mul_zero_left m), + show 0 * n ≤ 0 * m, from subst H2 (le_refl (0 * n))) + (take (l : ℕ), + assume IH : l * n ≤ l * m, + have H2 : l * n + n ≤ l * m + m, from add_le IH H, + have H3 : succ l * n ≤ l * m + m, from subst (symm (mul_succ_left l n)) H2, + show succ l * n ≤ succ l * m, from subst (symm (mul_succ_left l m)) H3) + +theorem mul_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k +:= mul_comm k m ▸ mul_comm k n ▸ (mul_le_left H k) + +theorem mul_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l +:= le_trans (mul_le_right H1 m) (mul_le_left H2 k) + +-- mul_le_[left|right]_inv below + +-------------------------------------------------- lt + +definition lt (n m : ℕ) := succ n ≤ m +infix `<`:50 := lt + +theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m +:= le_intro H + +theorem lt_elim {n m : ℕ} (H : n < m) : ∃ k, succ n + k = m +:= le_elim H + +theorem lt_intro2 (n m : ℕ) : n < n + succ m +:= lt_intro (add_move_succ n m) + +-------------------------------------------------- ge, gt + +definition ge (n m : ℕ) := m ≤ n +infix `>=`:50 := ge +infix `≥`:50 := ge + +definition gt (n m : ℕ) := m < n +infix `>`:50 := gt + +---------- basic facts + +theorem lt_ne {n m : ℕ} (H : n < m) : n ≠ m +:= and_elim_right (succ_le_left_inv H) + +theorem lt_irrefl (n : ℕ) : ¬ n < n +:= assume H : n < n, absurd (refl n) (lt_ne H) + +theorem lt_zero (n : ℕ) : 0 < succ n +:= succ_le (zero_le n) + +theorem lt_zero_inv (n : ℕ) : ¬ n < 0 +:= assume H : n < 0, + have H2 : succ n = 0, from le_zero_inv H, + absurd H2 (succ_ne_zero n) + +theorem lt_positive {n m : ℕ} (H : n < m) : ∃k, m = succ k +:= discriminate + (take (Hm : m = 0), absurd (subst Hm H) (lt_zero_inv n)) + (take (l : ℕ) (Hm : m = succ l), exists_intro l Hm) + +---------- interaction with le + +theorem lt_imp_le_succ {n m : ℕ} (H : n < m) : succ n ≤ m +:= H + +theorem le_succ_imp_lt {n m : ℕ} (H : succ n ≤ m) : n < m +:= H + +theorem self_lt_succ (n : ℕ) : n < succ n +:= le_refl (succ n) + +theorem lt_imp_le {n m : ℕ} (H : n < m) : n ≤ m +:= and_elim_left (succ_le_imp_le_and_ne H) + +theorem le_imp_lt_or_eq {n m : ℕ} (H : n ≤ m) : n < m ∨ n = m +:= le_imp_succ_le_or_eq H + +theorem le_ne_imp_lt {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : n < m +:= le_ne_imp_succ_le H1 H2 + +theorem le_imp_lt_succ {n m : ℕ} (H : n ≤ m) : n < succ m +:= succ_le H + +theorem lt_succ_imp_le {n m : ℕ} (H : n < succ m) : n ≤ m +:= succ_le_cancel H + +---------- trans, antisym + +theorem lt_le_trans {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k +:= le_trans H1 H2 + +theorem le_lt_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k +:= le_trans (succ_le H1) H2 + +theorem lt_trans {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k +:= lt_le_trans H1 (lt_imp_le H2) + +theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m +:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n) + +theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m +:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n) + +theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n +:= le_imp_not_gt (lt_imp_le H) + +---------- interaction with add + +theorem add_lt_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m +:= add_succ_right k n ▸ add_le_left H k + +theorem add_lt_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k +:= add_comm k m ▸ add_comm k n ▸ add_lt_left H k + +theorem add_le_lt {n m k l : ℕ} (H1 : n ≤ k) (H2 : m < l) : n + m < k + l +:= le_lt_trans (add_le_right H1 m) (add_lt_left H2 k) + +theorem add_lt_le {n m k l : ℕ} (H1 : n < k) (H2 : m ≤ l) : n + m < k + l +:= lt_le_trans (add_lt_right H1 m) (add_le_left H2 k) + +theorem add_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n + m < k + l +:= add_lt_le H1 (lt_imp_le H2) + +theorem add_lt_left_inv {n m k : ℕ} (H : k + n < k + m) : n < m +:= add_le_left_inv (add_succ_right k n⁻¹ ▸ H) + +theorem add_lt_right_inv {n m k : ℕ} (H : n + k < m + k) : n < m +:= add_lt_left_inv (add_comm m k ▸ add_comm n k ▸ H) + +---------- interaction with succ (see also the interaction with le) + +theorem succ_lt {n m : ℕ} (H : n < m) : succ n < succ m +:= add_one m ▸ add_one n ▸ add_lt_right H 1 + +theorem succ_lt_inv {n m : ℕ} (H : succ n < succ m) : n < m +:= add_lt_right_inv (add_one m⁻¹ ▸ add_one n⁻¹ ▸ H) + +theorem lt_self_succ (n : ℕ) : n < succ n +:= le_refl (succ n) + +theorem succ_lt_right {n m : ℕ} (H : n < m) : n < succ m +:= lt_trans H (lt_self_succ m) + +---------- totality of lt and le + +theorem le_or_lt (n m : ℕ) : n ≤ m ∨ m < n +:= induction_on n + (or_intro_left _ (zero_le m)) + (take (k : ℕ), + assume IH : k ≤ m ∨ m < k, + or_elim IH + (assume H : k ≤ m, + obtain (l : ℕ) (Hl : k + l = m), from le_elim H, + discriminate + (assume H2 : l = 0, + have H3 : m = k, + from calc + m = k + l : symm Hl + ... = k + 0 : {H2} + ... = k : add_zero_right k, + have H4 : m < succ k, from subst H3 (lt_self_succ m), + or_intro_right _ H4) + (take l2 : ℕ, + assume H2 : l = succ l2, + have H3 : succ k + l2 = m, + from calc + succ k + l2 = k + succ l2 : add_move_succ k l2 + ... = k + l : {symm H2} + ... = m : Hl, + or_intro_left _ (le_intro H3))) + (assume H : m < k, or_intro_right _ (succ_lt_right H))) + +theorem trichotomy_alt (n m : ℕ) : (n < m ∨ n = m) ∨ m < n +:= or_imp_or (le_or_lt n m) (assume H : n ≤ m, le_imp_lt_or_eq H) (assume H : m < n, H) + +theorem trichotomy (n m : ℕ) : n < m ∨ n = m ∨ m < n +:= iff_elim_left or_assoc (trichotomy_alt n m) + +theorem le_total (n m : ℕ) : n ≤ m ∨ m ≤ n +:= or_imp_or (le_or_lt n m) (assume H : n ≤ m, H) (assume H : m < n, lt_imp_le H) + +-- interaction with mul under "positivity" + +theorem strong_induction_on {P : ℕ → Prop} (n : ℕ) (IH : ∀n, (∀m, m < n → P m) → P n) : P n +:= have stronger : ∀k, k ≤ n → P k, from + induction_on n + (take (k : ℕ), + assume H : k ≤ 0, + have H2 : k = 0, from le_zero_inv H, + have H3 : ∀m, m < k → P m, from + (take m : ℕ, + assume H4 : m < k, + have H5 : m < 0, from subst H2 H4, + absurd H5 (lt_zero_inv m)), + show P k, from IH k H3) + (take l : ℕ, + assume IHl : ∀k, k ≤ l → P k, + take k : ℕ, + assume H : k ≤ succ l, + or_elim (succ_le_right_inv H) + (assume H2 : k ≤ l, show P k, from IHl k H2) + (assume H2 : k = succ l, + have H3 : ∀m, m < k → P m, from + (take m : ℕ, + assume H4 : m < k, + have H5 : m ≤ l, from lt_succ_imp_le (subst H2 H4), + show P m, from IHl m H5), + show P k, from IH k H3)), + stronger n (le_refl n) + +theorem case_strong_induction_on {P : ℕ → Prop} (a : ℕ) (H0 : P 0) (Hind : ∀(n : ℕ), (∀m, m ≤ n → P m) → P (succ n)) : P a +:= strong_induction_on a + (take n, case n + (assume H : (∀m, m < 0 → P m), H0) + (take n, assume H : (∀m, m < succ n → P m), + Hind n (take m, assume H1 : m ≤ n, H m (le_imp_lt_succ H1)))) + +theorem add_eq_self {n m : ℕ} (H : n + m = n) : m = 0 +:= discriminate + (take Hm : m = 0, Hm) + (take k : ℕ, + assume Hm : m = succ k, + have H2 : succ n + k = n, + from calc + succ n + k = n + succ k : add_move_succ n k + ... = n + m : {symm Hm} + ... = n : H, + have H3 : n < n, from lt_intro H2, + have H4 : n ≠ n, from lt_ne H3, + absurd (refl n) H4) + +-------------------------------------------------- positivity + +-- we use " _ > 0" as canonical way of denoting that a number is positive + +---------- basic + +theorem zero_or_positive (n : ℕ) : n = 0 ∨ n > 0 +:= or_imp_or (or_swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H) (take H : n > 0, H) + +theorem succ_positive {n m : ℕ} (H : n = succ m) : n > 0 +:= subst (symm H) (lt_zero m) + +theorem ne_zero_positive {n : ℕ} (H : n ≠ 0) : n > 0 +:= or_elim (zero_or_positive n) (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2) + +theorem pos_imp_eq_succ {n : ℕ} (H : n > 0) : ∃l, n = succ l +:= discriminate + (take H2, absurd (subst H2 H) (lt_irrefl 0)) + (take l Hl, exists_intro l Hl) + +theorem add_positive_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n +:= obtain (l : ℕ) (Hl : k = succ l), from pos_imp_eq_succ H, + subst (symm Hl) (lt_intro2 n l) + +theorem add_positive_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n +:= subst (add_comm n k) (add_positive_right n H) + + +-- Positivity +-- --------- +-- +-- Writing "t > 0" is the preferred way to assert that a natural number is positive. + +-- ### basic + +-- See also succ_pos. + +theorem succ_pos (n : ℕ) : 0 < succ n +:= succ_le (zero_le n) + +theorem case_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y +:= case y H0 (take y', H1 _ (succ_pos _)) + +theorem succ_imp_pos {n m : ℕ} (H : n = succ m) : n > 0 +:= subst (symm H) (succ_pos m) + +theorem add_pos_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n +:= subst (add_zero_right n) (add_lt_left H n) + +theorem add_pos_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n +:= subst (add_comm n k) (add_pos_right n H) + +---------- mul + +theorem mul_positive {n m : ℕ} (Hn : n > 0) (Hm : m > 0) : n * m > 0 +:= obtain (k : ℕ) (Hk : n = succ k), from pos_imp_eq_succ Hn, + obtain (l : ℕ) (Hl : m = succ l), from pos_imp_eq_succ Hm, + succ_positive (calc + n * m = succ k * m : {Hk} + ... = succ k * succ l : {Hl} + ... = succ k * l + succ k : mul_succ_right (succ k) l + ... = succ (succ k * l + k) : add_succ_right _ _) + +theorem mul_positive_inv_left {n m : ℕ} (H : n * m > 0) : n > 0 +:= discriminate + (assume H2 : n = 0, + have H3 : n * m = 0, + from calc + n * m = 0 * m : {H2} + ... = 0 : mul_zero_left m, + have H4 : 0 > 0, from subst H3 H, + absurd H4 (lt_irrefl 0)) + (take l : ℕ, + assume Hl : n = succ l, + subst (symm Hl) (lt_zero l)) + +theorem mul_positive_inv_right {n m : ℕ} (H : n * m > 0) : m > 0 +:= mul_positive_inv_left (subst (mul_comm n m) H) + +theorem mul_left_inj {n m k : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k +:= + have general : ∀m, n * m = n * k → m = k, from + induction_on k + (take m:ℕ, + assume H : n * m = n * 0, + have H2 : n * m = 0, + from calc + n * m = n * 0 : H + ... = 0 : mul_zero_right n, + have H3 : n = 0 ∨ m = 0, from mul_eq_zero H2, + resolve_right H3 (ne_symm (lt_ne Hn))) + (take (l : ℕ), + assume (IH : ∀ m, n * m = n * l → m = l), + take (m : ℕ), + assume (H : n * m = n * succ l), + have H2 : n * succ l > 0, from mul_positive Hn (lt_zero l), + have H3 : m > 0, from mul_positive_inv_right (subst (symm H) H2), + obtain (l2:ℕ) (Hm : m = succ l2), from pos_imp_eq_succ H3, + have H4 : n * l2 + n = n * l + n, + from calc + n * l2 + n = n * succ l2 : symm (mul_succ_right n l2) + ... = n * m : {symm Hm} + ... = n * succ l : H + ... = n * l + n : mul_succ_right n l, + have H5 : n * l2 = n * l, from add_cancel_right H4, + calc + m = succ l2 : Hm + ... = succ l : {IH l2 H5}), + general m H + +theorem mul_right_inj {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k +:= mul_left_inj Hm (subst (mul_comm k m) (subst (mul_comm n m) H)) + +-- mul_eq_one below + +---------- interaction of mul with le and lt + + +theorem mul_lt_left {n m k : ℕ} (Hk : k > 0) (H : n < m) : k * n < k * m +:= + have H2 : k * n < k * n + k, from add_positive_right (k * n) Hk, + have H3 : k * n + k ≤ k * m, from subst (mul_succ_right k n) (mul_le_left H k), + lt_le_trans H2 H3 + +theorem mul_lt_right {n m k : ℕ} (Hk : k > 0) (H : n < m) : n * k < m * k +:= subst (mul_comm k m) (subst (mul_comm k n) (mul_lt_left Hk H)) + +theorem mul_le_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l +:= le_lt_trans (mul_le_right H1 m) (mul_lt_left Hk H2) + +theorem mul_lt_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l +:= le_lt_trans (mul_le_left H2 n) (mul_lt_right Hl H1) + +theorem mul_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l +:= + have H3 : n * m ≤ k * m, from mul_le_right (lt_imp_le H1) m, + have H4 : k * m < k * l, from mul_lt_left (le_lt_trans (zero_le n) H1) H2, + le_lt_trans H3 H4 + +theorem mul_lt_left_inv {n m k : ℕ} (H : k * n < k * m) : n < m +:= + have general : ∀ m, k * n < k * m → n < m, from + induction_on n + (take m : ℕ, + assume H2 : k * 0 < k * m, + have H3 : 0 < k * m, from mul_zero_right k ▸ H2, + show 0 < m, from mul_positive_inv_right H3) + (take l : ℕ, + assume IH : ∀ m, k * l < k * m → l < m, + take m : ℕ, + assume H2 : k * succ l < k * m, + have H3 : 0 < k * m, from le_lt_trans (zero_le _) H2, + have H4 : 0 < m, from mul_positive_inv_right H3, + obtain (l2 : ℕ) (Hl2 : m = succ l2), from pos_imp_eq_succ H4, + have H5 : k * l + k < k * m, from mul_succ_right k l ▸ H2, + have H6 : k * l + k < k * succ l2, from Hl2 ▸ H5, + have H7 : k * l + k < k * l2 + k, from mul_succ_right k l2 ▸ H6, + have H8 : k * l < k * l2, from add_lt_right_inv H7, + have H9 : l < l2, from IH l2 H8, + have H10 : succ l < succ l2, from succ_lt H9, + show succ l < m, from Hl2⁻¹ ▸ H10), + general m H + +theorem mul_lt_right_inv {n m k : ℕ} (H : n * k < m * k) : n < m +:= mul_lt_left_inv (mul_comm m k ▸ mul_comm n k ▸ H) + +theorem mul_le_left_inv {n m k : ℕ} (H : succ k * n ≤ succ k * m) : n ≤ m +:= + have H2 : succ k * n < succ k * m + succ k, from le_lt_trans H (lt_intro2 _ _), + have H3 : succ k * n < succ k * succ m, from subst (symm (mul_succ_right (succ k) m)) H2, + have H4 : n < succ m, from mul_lt_left_inv H3, + show n ≤ m, from lt_succ_imp_le H4 + +theorem mul_le_right_inv {n m k : ℕ} (H : n * succ m ≤ k * succ m) : n ≤ k +:= mul_le_left_inv (subst (mul_comm k (succ m)) (subst (mul_comm n (succ m)) H)) + +theorem mul_eq_one_left {n m : ℕ} (H : n * m = 1) : n = 1 +:= + have H2 : n * m > 0, from subst (symm H) (lt_zero 0), + have H3 : n > 0, from mul_positive_inv_left H2, + have H4 : m > 0, from mul_positive_inv_right H2, + or_elim (le_or_lt n 1) + (assume H5 : n ≤ 1, + show n = 1, from le_antisym H5 H3) + (assume H5 : n > 1, + have H6 : n * m ≥ 2 * 1, from mul_le H5 H4, + have H7 : 1 ≥ 2, from subst (mul_one_right 2) (subst H H6), + absurd (self_lt_succ 1) (le_imp_not_gt H7)) + +theorem mul_eq_one_right {n m : ℕ} (H : n * m = 1) : m = 1 +:= mul_eq_one_left (subst (mul_comm n m) H) + +theorem mul_eq_one {n m : ℕ} (H : n * m = 1) : n = 1 ∧ m = 1 +:= and_intro (mul_eq_one_left H) (mul_eq_one_right H) + +-------------------------------------------------- sub + +definition sub (n m : ℕ) : ℕ := nat_rec n (fun m x, pred x) m +infixl `-`:65 := sub +theorem sub_zero_right (n : ℕ) : n - 0 = n +theorem sub_succ_right (n m : ℕ) : n - succ m = pred (n - m) + +theorem sub_zero_left (n : ℕ) : 0 - n = 0 +:= induction_on n (sub_zero_right 0) + (take k : ℕ, + assume IH : 0 - k = 0, + calc + 0 - succ k = pred (0 - k) : sub_succ_right 0 k + ... = pred 0 : {IH} + ... = 0 : pred_zero) + +theorem sub_succ_succ (n m : ℕ) : succ n - succ m = n - m +:= induction_on m + (calc + succ n - 1 = pred (succ n - 0) : sub_succ_right (succ n) 0 + ... = pred (succ n) : {sub_zero_right (succ n)} + ... = n : pred_succ n + ... = n - 0 : symm (sub_zero_right n)) + (take k : ℕ, + assume IH : succ n - succ k = n - k, + calc + succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right (succ n) (succ k) + ... = pred (n - k) : {IH} + ... = n - succ k : symm (sub_succ_right n k)) + +theorem sub_one (n : ℕ) : n - 1 = pred n +:= calc + n - 1 = pred (n - 0) : sub_succ_right n 0 + ... = pred n : {sub_zero_right n} + +theorem sub_self (n : ℕ) : n - n = 0 +:= induction_on n (sub_zero_right 0) (take k IH, trans (sub_succ_succ k k) IH) + +theorem sub_add_add_right (n m k : ℕ) : (n + k) - (m + k) = n - m +:= induction_on k + (calc + (n + 0) - (m + 0) = n - (m + 0) : {add_zero_right _} + ... = n - m : {add_zero_right _}) + (take l : ℕ, + assume IH : (n + l) - (m + l) = n - m, + calc + (n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ_right _ _} + ... = succ (n + l) - succ (m + l) : {add_succ_right _ _} + ... = (n + l) - (m + l) : sub_succ_succ _ _ + ... = n - m : IH) + +theorem sub_add_add_left (n m k : ℕ) : (k + n) - (k + m) = n - m +:= subst (add_comm m k) (subst (add_comm n k) (sub_add_add_right n m k)) + +theorem sub_add_left (n m : ℕ) : n + m - m = n +:= induction_on m + (subst (symm (add_zero_right n)) (sub_zero_right n)) + (take k : ℕ, + assume IH : n + k - k = n, + calc + n + succ k - succ k = succ (n + k) - succ k : {add_succ_right n k} + ... = n + k - k : sub_succ_succ _ _ + ... = n : IH) + +theorem sub_sub (n m k : ℕ) : n - m - k = n - (m + k) +:= induction_on k + (calc + n - m - 0 = n - m : sub_zero_right _ + ... = n - (m + 0) : {symm (add_zero_right m)}) + (take l : ℕ, + assume IH : n - m - l = n - (m + l), + calc + n - m - succ l = pred (n - m - l) : sub_succ_right (n - m) l + ... = pred (n - (m + l)) : {IH} + ... = n - succ (m + l) : symm (sub_succ_right n (m + l)) + ... = n - (m + succ l) : {symm (add_succ_right m l)}) + +theorem succ_sub_sub (n m k : ℕ) : succ n - m - succ k = n - m - k +:= calc + succ n - m - succ k = succ n - (m + succ k) : sub_sub _ _ _ + ... = succ n - succ (m + k) : {add_succ_right m k} + ... = n - (m + k) : sub_succ_succ _ _ + ... = n - m - k : symm (sub_sub n m k) + +theorem sub_add_right_eq_zero (n m : ℕ) : n - (n + m) = 0 +:= calc + n - (n + m) = n - n - m : symm (sub_sub n n m) + ... = 0 - m : {sub_self n} + ... = 0 : sub_zero_left m + +theorem sub_comm (m n k : ℕ) : m - n - k = m - k - n +:= calc + m - n - k = m - (n + k) : sub_sub m n k + ... = m - (k + n) : {add_comm n k} + ... = m - k - n : symm (sub_sub m k n) + +theorem succ_sub_one (n : ℕ) : succ n - 1 = n +:= sub_succ_succ n 0 ⬝ sub_zero_right n + +---------- mul + +theorem mul_pred_left (n m : ℕ) : pred n * m = n * m - m +:= induction_on n + (calc + pred 0 * m = 0 * m : {pred_zero} + ... = 0 : mul_zero_left _ + ... = 0 - m : symm (sub_zero_left m) + ... = 0 * m - m : {symm (mul_zero_left m)}) + (take k : ℕ, + assume IH : pred k * m = k * m - m, + calc + pred (succ k) * m = k * m : {pred_succ k} + ... = k * m + m - m : symm (sub_add_left _ _) + ... = succ k * m - m : {symm (mul_succ_left k m)}) + +theorem mul_pred_right (n m : ℕ) : n * pred m = n * m - n +:= calc n * pred m = pred m * n : mul_comm _ _ + ... = m * n - n : mul_pred_left m n + ... = n * m - n : {mul_comm m n} + +theorem mul_sub_distr_left (n m k : ℕ) : (n - m) * k = n * k - m * k +:= induction_on m + (calc + (n - 0) * k = n * k : {sub_zero_right n} + ... = n * k - 0 : symm (sub_zero_right _) + ... = n * k - 0 * k : {symm (mul_zero_left _)}) + (take l : ℕ, + assume IH : (n - l) * k = n * k - l * k, + calc + (n - succ l) * k = pred (n - l) * k : {sub_succ_right n l} + ... = (n - l) * k - k : mul_pred_left _ _ + ... = n * k - l * k - k : {IH} + ... = n * k - (l * k + k) : sub_sub _ _ _ + ... = n * k - (succ l * k) : {symm (mul_succ_left l k)}) + +theorem mul_sub_distr_right (n m k : ℕ) : n * (m - k) = n * m - n * k +:= calc + n * (m - k) = (m - k) * n : mul_comm _ _ + ... = m * n - k * n : mul_sub_distr_left _ _ _ + ... = n * m - k * n : {mul_comm _ _} + ... = n * m - n * k : {mul_comm _ _} + +-------------------------------------------------- max, min, iteration, maybe: sub, div + +theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) +:= sub_induction n m + (take k, + assume H : 0 ≤ k, + calc + succ k - 0 = succ k : sub_zero_right (succ k) + ... = succ (k - 0) : {symm (sub_zero_right k)}) + (take k, + assume H : succ k ≤ 0, + absurd H (not_succ_zero_le k)) + (take k l, + assume IH : k ≤ l → succ l - k = succ (l - k), + take H : succ k ≤ succ l, + calc + succ (succ l) - succ k = succ l - k : sub_succ_succ (succ l) k + ... = succ (l - k) : IH (succ_le_cancel H) + ... = succ (succ l - succ k) : {symm (sub_succ_succ l k)}) + +theorem le_imp_sub_eq_zero {n m : ℕ} (H : n ≤ m) : n - m = 0 +:= obtain (k : ℕ) (Hk : n + k = m), from le_elim H, subst Hk (sub_add_right_eq_zero n k) + +theorem add_sub_le {n m : ℕ} : n ≤ m → n + (m - n) = m +:= sub_induction n m + (take k, + assume H : 0 ≤ k, + calc + 0 + (k - 0) = k - 0 : add_zero_left (k - 0) + ... = k : sub_zero_right k) + (take k, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k)) + (take k l, + assume IH : k ≤ l → k + (l - k) = l, + take H : succ k ≤ succ l, + calc + succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ l k} + ... = succ (k + (l - k)) : add_succ_left k (l - k) + ... = succ l : {IH (succ_le_cancel H)}) + +theorem add_sub_ge_left {n m : ℕ} : n ≥ m → n - m + m = n +:= subst (add_comm m (n - m)) add_sub_le + +theorem add_sub_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n +:= calc + n + (m - n) = n + 0 : {le_imp_sub_eq_zero H} + ... = n : add_zero_right n + +theorem add_sub_le_left {n m : ℕ} : n ≤ m → n - m + m = m +:= subst (add_comm m (n - m)) add_sub_ge + +theorem le_add_sub_left (n m : ℕ) : n ≤ n + (m - n) +:= or_elim (le_total n m) + (assume H : n ≤ m, subst (symm (add_sub_le H)) H) + (assume H : m ≤ n, subst (symm (add_sub_ge H)) (le_refl n)) + +theorem le_add_sub_right (n m : ℕ) : m ≤ n + (m - n) +:= or_elim (le_total n m) + (assume H : n ≤ m, subst (symm (add_sub_le H)) (le_refl m)) + (assume H : m ≤ n, subst (symm (add_sub_ge H)) H) + +theorem sub_split {P : ℕ → Prop} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k) + : P (n - m) +:= or_elim (le_total n m) + (assume H3 : n ≤ m, subst (symm (le_imp_sub_eq_zero H3)) (H1 H3)) + (assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3)) + +theorem sub_le_self (n m : ℕ) : n - m ≤ n +:= + sub_split + (assume H : n ≤ m, zero_le n) + (take k : ℕ, assume H : m + k = n, le_intro (subst (add_comm m k) H)) + +theorem le_elim_sub (n m : ℕ) (H : n ≤ m) : ∃k, m - k = n +:= + obtain (k : ℕ) (Hk : n + k = m), from le_elim H, + exists_intro k + (calc + m - k = n + k - k : {symm Hk} + ... = n : sub_add_left n k) + +theorem add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k) +:= have l1 : k ≤ m → n + m - k = n + (m - k), from + sub_induction k m + (take m : ℕ, + assume H : 0 ≤ m, + calc + n + m - 0 = n + m : sub_zero_right (n + m) + ... = n + (m - 0) : {symm (sub_zero_right m)}) + (take k : ℕ, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k)) + (take k m, + assume IH : k ≤ m → n + m - k = n + (m - k), + take H : succ k ≤ succ m, + calc + n + succ m - succ k = succ (n + m) - succ k : {add_succ_right n m} + ... = n + m - k : sub_succ_succ (n + m) k + ... = n + (m - k) : IH (succ_le_cancel H) + ... = n + (succ m - succ k) : {symm (sub_succ_succ m k)}), + l1 H + +theorem sub_eq_zero_imp_le {n m : ℕ} : n - m = 0 → n ≤ m +:= sub_split + (assume H1 : n ≤ m, assume H2 : 0 = 0, H1) + (take k : ℕ, + assume H1 : m + k = n, + assume H2 : k = 0, + have H3 : n = m, from subst (add_zero_right m) (subst H2 (symm H1)), + subst H3 (le_refl n)) + +theorem sub_sub_split {P : ℕ → ℕ → Prop} {n m : ℕ} (H1 : ∀k, n = m + k -> P k 0) + (H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n) +:= or_elim (le_total n m) + (assume H3 : n ≤ m, + le_imp_sub_eq_zero H3⁻¹ ▸ (H2 (m - n) (add_sub_le H3⁻¹))) + (assume H3 : m ≤ n, + le_imp_sub_eq_zero H3⁻¹ ▸ (H1 (n - m) (add_sub_le H3⁻¹))) + +theorem sub_intro {n m k : ℕ} (H : n + m = k) : k - n = m +:= have H2 : k - n + n = m + n, from + calc + k - n + n = k : add_sub_ge_left (le_intro H) + ... = n + m : symm H + ... = m + n : add_comm n m, + add_cancel_right H2 + +theorem sub_lt {x y : ℕ} (xpos : x > 0) (ypos : y > 0) : x - y < x +:= obtain (x' : ℕ) (xeq : x = succ x'), from pos_imp_eq_succ xpos, + obtain (y' : ℕ) (yeq : y = succ y'), from pos_imp_eq_succ ypos, + have xsuby_eq : x - y = x' - y', from + calc + x - y = succ x' - y : {xeq} + ... = succ x' - succ y' : {yeq} + ... = x' - y' : sub_succ_succ _ _, + have H1 : x' - y' ≤ x', from sub_le_self _ _, + have H2 : x' < succ x', from self_lt_succ _, + show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2 + +-- Max, min, iteration, and absolute difference +-- -------------------------------------------- + +definition max (n m : ℕ) : ℕ := n + (m - n) +definition min (n m : ℕ) : ℕ := m - (m - n) + +theorem max_le {n m : ℕ} (H : n ≤ m) : n + (m - n) = m := add_sub_le H + +theorem max_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := add_sub_ge H + +theorem left_le_max (n m : ℕ) : n ≤ n + (m - n) := le_add_sub_left n m + +theorem right_le_max (n m : ℕ) : m ≤ max n m := le_add_sub_right n m + +-- ### absolute difference + +-- This section is still incomplete + +definition dist (n m : ℕ) := (n - m) + (m - n) + +theorem dist_comm (n m : ℕ) : dist n m = dist m n +:= add_comm (n - m) (m - n) + +theorem dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m +:= + have H2 : n - m = 0, from add_eq_zero_left H, + have H3 : n ≤ m, from sub_eq_zero_imp_le H2, + have H4 : m - n = 0, from add_eq_zero_right H, + have H5 : m ≤ n, from sub_eq_zero_imp_le H4, + le_antisym H3 H5 + +theorem dist_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n +:= calc + dist n m = (n - m) + (m - n) : refl _ + ... = 0 + (m - n) : {le_imp_sub_eq_zero H} + ... = m - n : add_zero_left (m - n) + +theorem dist_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m +:= subst (dist_comm m n) (dist_le H) + +theorem dist_zero_right (n : ℕ) : dist n 0 = n +:= trans (dist_ge (zero_le n)) (sub_zero_right n) + +theorem dist_zero_left (n : ℕ) : dist 0 n = n +:= trans (dist_le (zero_le n)) (sub_zero_right n) + +theorem dist_intro {n m k : ℕ} (H : n + m = k) : dist k n = m +:= calc + dist k n = k - n : dist_ge (le_intro H) + ... = m : sub_intro H + +theorem dist_add_right (n k m : ℕ) : dist (n + k) (m + k) = dist n m +:= + calc + dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : refl _ + ... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right _ _ _} + ... = (n - m) + (m - n) : {sub_add_add_right _ _ _} + +theorem dist_add_left (k n m : ℕ) : dist (k + n) (k + m) = dist n m +:= subst (add_comm m k) (subst (add_comm n k) (dist_add_right n k m)) + +theorem dist_ge_add_right {n m : ℕ} (H : n ≥ m) : dist n m + m = n +:= calc + dist n m + m = n - m + m : {dist_ge H} + ... = n : add_sub_ge_left H + +theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m +:= calc + dist n k = dist (n + m) (k + m) : symm (dist_add_right n m k) + ... = dist (k + l) (k + m) : {H} + ... = dist l m : dist_add_left k l m + +end nat