feat(library/data/finset/bigops.lean): add Union for finsets

This commit is contained in:
Jeremy Avigad 2015-05-17 17:50:32 +10:00
parent 783dd61083
commit 6549940c63
5 changed files with 115 additions and 1 deletions

View file

@ -61,6 +61,10 @@ section monoid
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f :=
by rewrite [union_eq_append d, Prodl_append]
end deceqA
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = 1
| [] := rfl
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
end monoid
section comm_monoid
@ -134,6 +138,9 @@ section comm_monoid
assert H4 : f x = g x, from H2 !mem_insert,
by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4])
end deceqA
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = 1 :=
quot.induction_on s (take u, !Prodl_one)
end comm_monoid
section add_monoid
@ -161,6 +168,8 @@ section add_monoid
theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d
end deceqA
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = 0 := Prodl_one l
end add_monoid
section add_comm_monoid
@ -199,6 +208,8 @@ section add_comm_monoid
theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
end deceqA
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = 0 := Prod_one s
end add_comm_monoid
end algebra

View file

@ -0,0 +1,98 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite unions and intersections on finsets.
Note: for the moment we only do unions. We need to generalize bigops for intersections.
-/
import data.finset.comb algebra.group_bigops
open list
namespace finset
variables {A B : Type} [deceqA : decidable_eq A] [deceqB : decidable_eq B]
/- Unionl and Union -/
section union
definition to_comm_monoid_Union (B : Type) [deceqB : decidable_eq B] :
algebra.comm_monoid (finset B) :=
⦃ algebra.comm_monoid,
mul := union,
mul_assoc := union.assoc,
one := empty,
mul_one := union_empty,
one_mul := empty_union,
mul_comm := union.comm
open [classes] algebra
local attribute finset.to_comm_monoid_Union [instance]
include deceqB
definition Unionl (l : list A) (f : A → finset B) : finset B := algebra.Prodl l f
notation `` binders `←` l, r:(scoped f, Unionl l f) := r
definition Union (s : finset A) (f : A → finset B) : finset B := algebra.Prod s f
notation `` binders `∈` s, r:(scoped f, finset.Union s f) := r
theorem Unionl_nil (f : A → finset B) : Unionl [] f = ∅ := algebra.Prodl_nil f
theorem Unionl_cons (f : A → finset B) (a : A) (l : list A) :
Unionl (a::l) f = f a Unionl l f := algebra.Prodl_cons f a l
theorem Unionl_append (l₁ l₂ : list A) (f : A → finset B) :
Unionl (l₁++l₂) f = Unionl l₁ f Unionl l₂ f := algebra.Prodl_append l₁ l₂ f
theorem Unionl_mul (l : list A) (f g : A → finset B) :
Unionl l (λx, f x g x) = Unionl l f Unionl l g := algebra.Prodl_mul l f g
section deceqA
include deceqA
theorem Unionl_insert_of_mem (f : A → finset B) {a : A} {l : list A} (H : a ∈ l) :
Unionl (list.insert a l) f = Unionl l f := algebra.Prodl_insert_of_mem f H
theorem Unionl_insert_of_not_mem (f : A → finset B) {a : A} {l : list A} (H : a ∉ l) :
Unionl (list.insert a l) f = f a Unionl l f := algebra.Prodl_insert_of_not_mem f H
theorem Unionl_union {l₁ l₂ : list A} (f : A → finset B) (d : list.disjoint l₁ l₂) :
Unionl (list.union l₁ l₂) f = Unionl l₁ f Unionl l₂ f := algebra.Prodl_union f d
theorem Unionl_empty (l : list A) : Unionl l (λ x, ∅) = ∅ := algebra.Prodl_one l
end deceqA
theorem Union_empty (f : A → finset B) : Union ∅ f = ∅ := algebra.Prod_empty f
theorem Union_mul (s : finset A) (f g : A → finset B) :
Union s (λx, f x g x) = Union s f Union s g := algebra.Prod_mul s f g
section deceqA
include deceqA
theorem Union_insert_of_mem (f : A → finset B) {a : A} {s : finset A} (H : a ∈ s) :
Union (insert a s) f = Union s f := algebra.Prod_insert_of_mem f H
theorem Union_insert_of_not_mem (f : A → finset B) {a : A} {s : finset A} (H : a ∉ s) :
Union (insert a s) f = f a Union s f := algebra.Prod_insert_of_not_mem f H
theorem Union_union (f : A → finset B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Union (s₁ s₂) f = Union s₁ f Union s₂ f := algebra.Prod_union f disj
theorem Union_ext {s : finset A} {f g : A → finset B} (H : ∀x, x ∈ s → f x = g x) :
Union s f = Union s g := algebra.Prod_ext H
theorem Union_empty' (s : finset A) : Union s (λ x, ∅) = ∅ := algebra.Prod_one s
-- this will eventually be an instance of something more general
theorem inter_Union (s : finset B) (t : finset A) (f : A → finset B) :
s ∩ ( x ∈ t, f x) = ( x ∈ t, s ∩ f x) :=
finset.induction_on t
(by rewrite [*Union_empty, inter_empty])
(take s' x, assume H : x ∉ s',
assume IH,
by rewrite [*Union_insert_of_not_mem _ H, inter.distrib_left, IH])
theorem mem_Union_iff (s : finset A) (f : A → finset B) (b : B) :
b ∈ ( x ∈ s, f x) ↔ (∃ x, x ∈ s ∧ b ∈ f x ) :=
finset.induction_on s
(by rewrite [exists_mem_empty_eq])
(take s' a, assume H : a ∉ s', assume IH,
by rewrite [Union_insert_of_not_mem _ H, mem_union_eq, IH, exists_mem_insert_eq])
theorem mem_Union_eq (s : finset A) (f : A → finset B) (b : B) :
b ∈ ( x ∈ s, f x) = (∃ x, x ∈ s ∧ b ∈ f x ) :=
propext !mem_Union_iff
end deceqA
end union
end finset

View file

@ -5,4 +5,4 @@ Author: Leonardo de Moura
Finite sets.
-/
import .basic .comb .to_set .card
import .basic .comb .to_set .card .bigops

View file

@ -7,3 +7,4 @@ Finite sets. By default, `import list` imports everything here.
[comb](comb.lean) : combinators and list constructions
[to_set](to_set.lean) : interactions with sets
[card](card.lean) : cardinality
[bigops](bigops.lean) : finite unions and intersections

View file

@ -33,6 +33,7 @@ section deceqA
Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H
theorem Prodl_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d
theorem Prodl_one (l : list A) : Prodl l (λ x, nat.succ 0) = 1 := algebra.Prodl_one l
end deceqA
/- Prod -/
@ -53,6 +54,7 @@ section deceqA
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.Prod_union f disj
theorem Prod_ext {s : finset A} {f g : A → nat} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.Prod_ext H
theorem Prod_one (s : finset A) : Prod s (λ x, nat.succ 0) = 1 := algebra.Prod_one s
end deceqA
/- Suml -/
@ -75,6 +77,7 @@ section deceqA
Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → nat) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d
theorem Suml_zero (l : list A) : Suml l (λ x, zero) = 0 := algebra.Suml_zero l
end deceqA
/- Sum -/
@ -95,6 +98,7 @@ section deceqA
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.Sum_union f disj
theorem Sum_ext {s : finset A} {f g : A → nat} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.Sum_ext H
theorem Sum_zero (s : finset A) : Sum s (λ x, zero) = 0 := algebra.Sum_zero s
end deceqA
end nat