feat(library/definitional/brec_on): simplify universe level constraints for non-reflexive recursive datatypes
This commit is contained in:
parent
320971832d
commit
6640fbf11b
4 changed files with 65 additions and 14 deletions
|
@ -47,15 +47,17 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
|
|||
unsigned nminors = *inductive::get_num_minor_premises(env, n);
|
||||
unsigned ntypeformers = length(std::get<2>(decls));
|
||||
level_param_names lps = rec_decl.get_univ_params();
|
||||
level lvl = mk_param_univ(head(lps)); // universe we are eliminating too
|
||||
bool is_reflexive = is_reflexive_datatype(tc, n);
|
||||
level lvl = mk_param_univ(head(lps)); // universe we are eliminating to
|
||||
levels lvls = param_names_to_levels(tail(lps));
|
||||
levels blvls;
|
||||
level rlvl;
|
||||
levels blvls; // universe level parameters of ibelow/below
|
||||
level rlvl; // universe level of the resultant type
|
||||
name prod_name;
|
||||
expr unit, outer_prod;
|
||||
expr unit, outer_prod, inner_prod;
|
||||
// The arguments of below (ibelow) are the ones in the recursor - minor premises.
|
||||
// The universe we map to is also different (l+1 for below) and (0 fo ibelow).
|
||||
expr ref_type;
|
||||
expr Type_result;
|
||||
if (ibelow) {
|
||||
// we are eliminating to Prop
|
||||
blvls = lvls;
|
||||
|
@ -63,8 +65,10 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
|
|||
unit = mk_constant("true");
|
||||
prod_name = name("and");
|
||||
outer_prod = mk_constant(prod_name);
|
||||
inner_prod = outer_prod;
|
||||
ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
|
||||
} else {
|
||||
Type_result = mk_sort(rlvl);
|
||||
} else if (is_reflexive) {
|
||||
blvls = cons(lvl, lvls);
|
||||
rlvl = get_datatype_level(ind_decl.get_type());
|
||||
// if rlvl is of the form (max 1 l), then rlvl <- l
|
||||
|
@ -75,8 +79,18 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
|
|||
prod_name = name("prod");
|
||||
outer_prod = mk_constant(prod_name, {rlvl, rlvl});
|
||||
ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
|
||||
Type_result = mk_sort(rlvl);
|
||||
} else {
|
||||
// we can simplify the universe levels for non-reflexive datatypes
|
||||
blvls = cons(lvl, lvls);
|
||||
rlvl = mk_max(mk_level_one(), lvl);
|
||||
unit = mk_constant("unit", rlvl);
|
||||
prod_name = name("prod");
|
||||
outer_prod = mk_constant(prod_name, {rlvl, rlvl});
|
||||
inner_prod = mk_constant(prod_name, {lvl, rlvl});
|
||||
ref_type = rec_decl.get_type();
|
||||
Type_result = mk_sort(rlvl);
|
||||
}
|
||||
expr Type_result = mk_sort(rlvl);
|
||||
buffer<expr> ref_args;
|
||||
to_telescope(ngen, ref_type, ref_args);
|
||||
if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
|
||||
|
@ -121,10 +135,8 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
|
|||
expr r = minor_arg;
|
||||
expr fst = mlocal_type(minor_arg);
|
||||
expr snd = Pi(minor_arg_args, mk_app(r, minor_arg_args));
|
||||
expr inner_prod;
|
||||
if (ibelow) {
|
||||
inner_prod = outer_prod; // and
|
||||
} else {
|
||||
if (!ibelow && is_reflexive) {
|
||||
// inner product is not constant
|
||||
level fst_lvl = sort_level(tc.ensure_type(fst).first);
|
||||
inner_prod = mk_constant(prod_name, {fst_lvl, rlvl});
|
||||
}
|
||||
|
|
|
@ -64,6 +64,28 @@ bool is_recursive_datatype(environment const & env, name const & n) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool is_reflexive_datatype(type_checker & tc, name const & n) {
|
||||
environment const & env = tc.env();
|
||||
name_generator ngen = tc.mk_ngen();
|
||||
optional<inductive::inductive_decls> decls = inductive::is_inductive_decl(env, n);
|
||||
if (!decls)
|
||||
return false;
|
||||
for (inductive::inductive_decl const & decl : std::get<2>(*decls)) {
|
||||
for (inductive::intro_rule const & intro : inductive::inductive_decl_intros(decl)) {
|
||||
expr type = inductive::intro_rule_type(intro);
|
||||
while (is_pi(type)) {
|
||||
expr arg = tc.whnf(binding_domain(type)).first;
|
||||
if (is_pi(arg) && find(arg, [&](expr const & e, unsigned) { return is_constant(e) && const_name(e) == n; })) {
|
||||
return true;
|
||||
}
|
||||
expr local = mk_local(ngen.next(), binding_domain(type));
|
||||
type = instantiate(binding_body(type), local);
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
level get_datatype_level(expr ind_type) {
|
||||
while (is_pi(ind_type))
|
||||
ind_type = binding_body(ind_type);
|
||||
|
|
|
@ -22,6 +22,13 @@ bool has_prod_decls(environment const & env);
|
|||
*/
|
||||
bool is_recursive_datatype(environment const & env, name const & n);
|
||||
|
||||
/** \brief Return true if \c n is a recursive *and* reflexive datatype.
|
||||
|
||||
We say an inductive type T is reflexive if it contains at least one constructor that
|
||||
takes as an argument a function returning T.
|
||||
*/
|
||||
bool is_reflexive_datatype(type_checker & tc, name const & n);
|
||||
|
||||
/** \brief Return true iff \c n is an inductive predicate, i.e., an inductive datatype that is in Prop.
|
||||
|
||||
\remark If \c env does not have Prop (i.e., Type.{0} is not impredicative), then this method always return false.
|
||||
|
|
|
@ -6,7 +6,7 @@ vnil {} : vector A zero,
|
|||
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
|
||||
|
||||
namespace vector
|
||||
print definition no_confusion
|
||||
-- print definition no_confusion
|
||||
infixr `::` := vcons
|
||||
|
||||
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
|
||||
|
@ -19,10 +19,13 @@ namespace vector
|
|||
intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption,
|
||||
end
|
||||
|
||||
set_option pp.universes true
|
||||
check @below
|
||||
|
||||
section
|
||||
universe variables l₁ l₂
|
||||
variable {A : Type.{l₁}}
|
||||
variable {C : Π (n : nat), vector A n → Type.{l₂+1}}
|
||||
variable {C : Π (n : nat), vector A n → Type.{l₂}}
|
||||
definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v :=
|
||||
have general : C n v × @below A C n v, from
|
||||
rec_on v
|
||||
|
@ -36,7 +39,7 @@ namespace vector
|
|||
pr₁ general
|
||||
end
|
||||
|
||||
check brec_on
|
||||
-- check brec_on
|
||||
|
||||
definition bw := @below
|
||||
|
||||
|
@ -94,7 +97,7 @@ namespace vector
|
|||
example : add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil :=
|
||||
rfl
|
||||
|
||||
definition map {A B C : Type'} {n : nat} (f : A → B → C) (w : vector A n) (v : vector B n) : vector C n :=
|
||||
definition map {A B C : Type} {n : nat} (f : A → B → C) (w : vector A n) (v : vector B n) : vector C n :=
|
||||
let P := λ (n : nat) (v : vector A n), vector B n → vector C n in
|
||||
@brec_on A P n w
|
||||
(λ (n : nat) (w : vector A n),
|
||||
|
@ -111,6 +114,13 @@ namespace vector
|
|||
end
|
||||
end) v
|
||||
|
||||
theorem map_nil_nil {A B C : Type} (f : A → B → C) : map f vnil vnil = vnil :=
|
||||
rfl
|
||||
|
||||
theorem map_cons_cons {A B C : Type} (f : A → B → C) (a : A) (b : B) {n : nat} (va : vector A n) (vb : vector B n) :
|
||||
map f (a :: va) (b :: vb) = f a b :: map f va vb :=
|
||||
rfl
|
||||
|
||||
example : map nat.add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil :=
|
||||
rfl
|
||||
|
||||
|
|
Loading…
Reference in a new issue