feat(library/definitional/brec_on): simplify universe level constraints for non-reflexive recursive datatypes

This commit is contained in:
Leonardo de Moura 2014-12-01 17:11:06 -08:00
parent 320971832d
commit 6640fbf11b
4 changed files with 65 additions and 14 deletions

View file

@ -47,15 +47,17 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
unsigned nminors = *inductive::get_num_minor_premises(env, n); unsigned nminors = *inductive::get_num_minor_premises(env, n);
unsigned ntypeformers = length(std::get<2>(decls)); unsigned ntypeformers = length(std::get<2>(decls));
level_param_names lps = rec_decl.get_univ_params(); level_param_names lps = rec_decl.get_univ_params();
level lvl = mk_param_univ(head(lps)); // universe we are eliminating too bool is_reflexive = is_reflexive_datatype(tc, n);
level lvl = mk_param_univ(head(lps)); // universe we are eliminating to
levels lvls = param_names_to_levels(tail(lps)); levels lvls = param_names_to_levels(tail(lps));
levels blvls; levels blvls; // universe level parameters of ibelow/below
level rlvl; level rlvl; // universe level of the resultant type
name prod_name; name prod_name;
expr unit, outer_prod; expr unit, outer_prod, inner_prod;
// The arguments of below (ibelow) are the ones in the recursor - minor premises. // The arguments of below (ibelow) are the ones in the recursor - minor premises.
// The universe we map to is also different (l+1 for below) and (0 fo ibelow). // The universe we map to is also different (l+1 for below) and (0 fo ibelow).
expr ref_type; expr ref_type;
expr Type_result;
if (ibelow) { if (ibelow) {
// we are eliminating to Prop // we are eliminating to Prop
blvls = lvls; blvls = lvls;
@ -63,8 +65,10 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
unit = mk_constant("true"); unit = mk_constant("true");
prod_name = name("and"); prod_name = name("and");
outer_prod = mk_constant(prod_name); outer_prod = mk_constant(prod_name);
inner_prod = outer_prod;
ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero()); ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
} else { Type_result = mk_sort(rlvl);
} else if (is_reflexive) {
blvls = cons(lvl, lvls); blvls = cons(lvl, lvls);
rlvl = get_datatype_level(ind_decl.get_type()); rlvl = get_datatype_level(ind_decl.get_type());
// if rlvl is of the form (max 1 l), then rlvl <- l // if rlvl is of the form (max 1 l), then rlvl <- l
@ -75,8 +79,18 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
prod_name = name("prod"); prod_name = name("prod");
outer_prod = mk_constant(prod_name, {rlvl, rlvl}); outer_prod = mk_constant(prod_name, {rlvl, rlvl});
ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl)); ref_type = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
Type_result = mk_sort(rlvl);
} else {
// we can simplify the universe levels for non-reflexive datatypes
blvls = cons(lvl, lvls);
rlvl = mk_max(mk_level_one(), lvl);
unit = mk_constant("unit", rlvl);
prod_name = name("prod");
outer_prod = mk_constant(prod_name, {rlvl, rlvl});
inner_prod = mk_constant(prod_name, {lvl, rlvl});
ref_type = rec_decl.get_type();
Type_result = mk_sort(rlvl);
} }
expr Type_result = mk_sort(rlvl);
buffer<expr> ref_args; buffer<expr> ref_args;
to_telescope(ngen, ref_type, ref_args); to_telescope(ngen, ref_type, ref_args);
if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1) if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
@ -121,10 +135,8 @@ static environment mk_below(environment const & env, name const & n, bool ibelow
expr r = minor_arg; expr r = minor_arg;
expr fst = mlocal_type(minor_arg); expr fst = mlocal_type(minor_arg);
expr snd = Pi(minor_arg_args, mk_app(r, minor_arg_args)); expr snd = Pi(minor_arg_args, mk_app(r, minor_arg_args));
expr inner_prod; if (!ibelow && is_reflexive) {
if (ibelow) { // inner product is not constant
inner_prod = outer_prod; // and
} else {
level fst_lvl = sort_level(tc.ensure_type(fst).first); level fst_lvl = sort_level(tc.ensure_type(fst).first);
inner_prod = mk_constant(prod_name, {fst_lvl, rlvl}); inner_prod = mk_constant(prod_name, {fst_lvl, rlvl});
} }

View file

@ -64,6 +64,28 @@ bool is_recursive_datatype(environment const & env, name const & n) {
return false; return false;
} }
bool is_reflexive_datatype(type_checker & tc, name const & n) {
environment const & env = tc.env();
name_generator ngen = tc.mk_ngen();
optional<inductive::inductive_decls> decls = inductive::is_inductive_decl(env, n);
if (!decls)
return false;
for (inductive::inductive_decl const & decl : std::get<2>(*decls)) {
for (inductive::intro_rule const & intro : inductive::inductive_decl_intros(decl)) {
expr type = inductive::intro_rule_type(intro);
while (is_pi(type)) {
expr arg = tc.whnf(binding_domain(type)).first;
if (is_pi(arg) && find(arg, [&](expr const & e, unsigned) { return is_constant(e) && const_name(e) == n; })) {
return true;
}
expr local = mk_local(ngen.next(), binding_domain(type));
type = instantiate(binding_body(type), local);
}
}
}
return false;
}
level get_datatype_level(expr ind_type) { level get_datatype_level(expr ind_type) {
while (is_pi(ind_type)) while (is_pi(ind_type))
ind_type = binding_body(ind_type); ind_type = binding_body(ind_type);

View file

@ -22,6 +22,13 @@ bool has_prod_decls(environment const & env);
*/ */
bool is_recursive_datatype(environment const & env, name const & n); bool is_recursive_datatype(environment const & env, name const & n);
/** \brief Return true if \c n is a recursive *and* reflexive datatype.
We say an inductive type T is reflexive if it contains at least one constructor that
takes as an argument a function returning T.
*/
bool is_reflexive_datatype(type_checker & tc, name const & n);
/** \brief Return true iff \c n is an inductive predicate, i.e., an inductive datatype that is in Prop. /** \brief Return true iff \c n is an inductive predicate, i.e., an inductive datatype that is in Prop.
\remark If \c env does not have Prop (i.e., Type.{0} is not impredicative), then this method always return false. \remark If \c env does not have Prop (i.e., Type.{0} is not impredicative), then this method always return false.

View file

@ -6,7 +6,7 @@ vnil {} : vector A zero,
vcons : Π {n : nat}, A → vector A n → vector A (succ n) vcons : Π {n : nat}, A → vector A n → vector A (succ n)
namespace vector namespace vector
print definition no_confusion -- print definition no_confusion
infixr `::` := vcons infixr `::` := vcons
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
@ -19,10 +19,13 @@ namespace vector
intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption, intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption,
end end
set_option pp.universes true
check @below
section section
universe variables l₁ l₂ universe variables l₁ l₂
variable {A : Type.{l₁}} variable {A : Type.{l₁}}
variable {C : Π (n : nat), vector A n → Type.{l₂+1}} variable {C : Π (n : nat), vector A n → Type.{l₂}}
definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v := definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v :=
have general : C n v × @below A C n v, from have general : C n v × @below A C n v, from
rec_on v rec_on v
@ -36,7 +39,7 @@ namespace vector
pr₁ general pr₁ general
end end
check brec_on -- check brec_on
definition bw := @below definition bw := @below
@ -94,7 +97,7 @@ namespace vector
example : add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil := example : add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil :=
rfl rfl
definition map {A B C : Type'} {n : nat} (f : A → B → C) (w : vector A n) (v : vector B n) : vector C n := definition map {A B C : Type} {n : nat} (f : A → B → C) (w : vector A n) (v : vector B n) : vector C n :=
let P := λ (n : nat) (v : vector A n), vector B n → vector C n in let P := λ (n : nat) (v : vector A n), vector B n → vector C n in
@brec_on A P n w @brec_on A P n w
(λ (n : nat) (w : vector A n), (λ (n : nat) (w : vector A n),
@ -111,6 +114,13 @@ namespace vector
end end
end) v end) v
theorem map_nil_nil {A B C : Type} (f : A → B → C) : map f vnil vnil = vnil :=
rfl
theorem map_cons_cons {A B C : Type} (f : A → B → C) (a : A) (b : B) {n : nat} (va : vector A n) (vb : vector B n) :
map f (a :: va) (b :: vb) = f a b :: map f va vb :=
rfl
example : map nat.add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil := example : map nat.add (1 :: 2 :: vnil) (3 :: 5 :: vnil) = 4 :: 7 :: vnil :=
rfl rfl