feat(builtin/kernel): add skolem_th, we need it to justify skolemization preprocessing step

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-22 09:41:07 -08:00
parent d9b5ebc738
commit 66553268d0
4 changed files with 17 additions and 2 deletions

View file

@ -211,10 +211,12 @@ theorem exists_intro {A : TypeU} {P : A → Bool} (a : A) (H : P a) : Exists A P
absurd H (H1 a) absurd H (H1 a)
theorem nonempty_ex_intro {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : nonempty A theorem nonempty_ex_intro {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : nonempty A
:= exists_elim H (λ (w : A) (Hw : P w), exists_intro w trivial) := obtain (w : A) (Hw : P w), from H,
exists_intro w trivial
theorem exists_to_eps {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : P (ε (nonempty_ex_intro H) P) theorem exists_to_eps {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : P (ε (nonempty_ex_intro H) P)
:= exists_elim H (λ (w : A) (Hw : P w), @eps_ax A (nonempty_ex_intro H) P w Hw) := obtain (w : A) (Hw : P w), from H,
@eps_ax A (nonempty_ex_intro H) P w Hw
theorem axiom_of_choice {A : TypeU} {B : TypeU} {R : A → B → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x) theorem axiom_of_choice {A : TypeU} {B : TypeU} {R : A → B → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x)
:= exists_intro := exists_intro
@ -233,6 +235,15 @@ theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b
theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b
:= boolext Hab Hba := boolext Hab Hba
theorem skolem_th {A : TypeU} {B : TypeU} {P : A → B → Bool} :
(∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x))
:= iff_intro
(λ H : (∀ x, ∃ y, P x y),
@axiom_of_choice A B P H)
(λ H : (∃ f, (∀ x, P x (f x))),
take x, obtain (fw : A → B) (Hw : ∀ x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))
theorem eqt_intro {a : Bool} (H : a) : a = true theorem eqt_intro {a : Bool} (H : a) : a = true
:= boolext (assume H1 : a, trivial) := boolext (assume H1 : a, trivial)
(assume H2 : true, H) (assume H2 : true, H)

Binary file not shown.

View file

@ -70,6 +70,7 @@ MK_CONSTANT(exists_to_eps_fn, name("exists_to_eps"));
MK_CONSTANT(axiom_of_choice_fn, name("axiom_of_choice")); MK_CONSTANT(axiom_of_choice_fn, name("axiom_of_choice"));
MK_CONSTANT(boolext_fn, name("boolext")); MK_CONSTANT(boolext_fn, name("boolext"));
MK_CONSTANT(iff_intro_fn, name("iff_intro")); MK_CONSTANT(iff_intro_fn, name("iff_intro"));
MK_CONSTANT(skolem_th_fn, name("skolem_th"));
MK_CONSTANT(eqt_intro_fn, name("eqt_intro")); MK_CONSTANT(eqt_intro_fn, name("eqt_intro"));
MK_CONSTANT(eqf_intro_fn, name("eqf_intro")); MK_CONSTANT(eqf_intro_fn, name("eqf_intro"));
MK_CONSTANT(neq_elim_fn, name("neq_elim")); MK_CONSTANT(neq_elim_fn, name("neq_elim"));

View file

@ -203,6 +203,9 @@ inline expr mk_boolext_th(expr const & e1, expr const & e2, expr const & e3, exp
expr mk_iff_intro_fn(); expr mk_iff_intro_fn();
bool is_iff_intro_fn(expr const & e); bool is_iff_intro_fn(expr const & e);
inline expr mk_iff_intro_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_iff_intro_fn(), e1, e2, e3, e4}); } inline expr mk_iff_intro_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_iff_intro_fn(), e1, e2, e3, e4}); }
expr mk_skolem_th_fn();
bool is_skolem_th_fn(expr const & e);
inline expr mk_skolem_th_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_skolem_th_fn(), e1, e2, e3}); }
expr mk_eqt_intro_fn(); expr mk_eqt_intro_fn();
bool is_eqt_intro_fn(expr const & e); bool is_eqt_intro_fn(expr const & e);
inline expr mk_eqt_intro_th(expr const & e1, expr const & e2) { return mk_app({mk_eqt_intro_fn(), e1, e2}); } inline expr mk_eqt_intro_th(expr const & e1, expr const & e2) { return mk_app({mk_eqt_intro_fn(), e1, e2}); }