feat(library/tactic/inversion_tactic): adjust inversion tactic to HoTT lib
This commit is contained in:
parent
7a75325416
commit
677ec2a2fe
2 changed files with 274 additions and 84 deletions
|
@ -8,14 +8,62 @@ Author: Leonardo de Moura
|
|||
#include "kernel/abstract.h"
|
||||
#include "kernel/instantiate.h"
|
||||
#include "kernel/inductive/inductive.h"
|
||||
#include "library/io_state_stream.h"
|
||||
#include "library/locals.h"
|
||||
#include "library/tactic/tactic.h"
|
||||
#include "library/util.h"
|
||||
#include "library/reducible.h"
|
||||
#include "library/tactic/tactic.h"
|
||||
#include "library/tactic/expr_to_tactic.h"
|
||||
#include "library/tactic/class_instance_synth.h"
|
||||
|
||||
namespace lean {
|
||||
/**
|
||||
\brief Given eq_rec of the form <tt>@eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p</tt>,
|
||||
apply the eq_rec_eq definition to produce the equality
|
||||
|
||||
b = @eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p
|
||||
|
||||
The eq_rec_eq definition is of the form
|
||||
|
||||
definition eq_rec_eq.{l₁ l₂} {A : Type.{l₁}} {B : A → Type.{l₂}} [h : is_hset A] {a : A} (b : B a) (p : a = a) :
|
||||
b = @eq.rec.{l₂ l₁} A a (λ (a' : A) (h : a = a'), B a') b a p :=
|
||||
...
|
||||
*/
|
||||
optional<expr> apply_eq_rec_eq(type_checker & tc, io_state const & ios, list<expr> const & ctx, expr const & eq_rec) {
|
||||
buffer<expr> args;
|
||||
expr const & eq_rec_fn = get_app_args(eq_rec, args);
|
||||
if (args.size() != 6)
|
||||
return none_expr();
|
||||
expr const & p = args[5];
|
||||
if (!is_local(p) || !is_eq_a_a(mlocal_type(p)))
|
||||
return none_expr();
|
||||
expr const & A = args[0];
|
||||
auto is_hset_A = mk_hset_instance(tc, ios, ctx, A);
|
||||
if (!is_hset_A)
|
||||
return none_expr();
|
||||
levels ls = const_levels(eq_rec_fn);
|
||||
level l2 = head(ls);
|
||||
level l1 = head(tail(ls));
|
||||
expr C = tc.whnf(args[2]).first;
|
||||
if (!is_lambda(C))
|
||||
return none_expr();
|
||||
expr a1 = mk_local(tc.mk_fresh_name(), binding_domain(C));
|
||||
C = tc.whnf(instantiate(binding_body(C), a1)).first;
|
||||
if (!is_lambda(C))
|
||||
return none_expr();
|
||||
C = binding_body(C);
|
||||
if (!closed(C))
|
||||
return none_expr();
|
||||
expr B = Fun(a1, C);
|
||||
expr a = args[1];
|
||||
expr b = args[3];
|
||||
expr r = mk_constant("eq_rec_eq", {l1, l2});
|
||||
return some_expr(mk_app({r, A, B, *is_hset_A, a, b, p}));
|
||||
}
|
||||
|
||||
class inversion_tac {
|
||||
environment const & m_env;
|
||||
io_state const & m_ios;
|
||||
proof_state const & m_ps;
|
||||
list<name> m_ids;
|
||||
name_generator m_ngen;
|
||||
|
@ -23,22 +71,24 @@ class inversion_tac {
|
|||
std::unique_ptr<type_checker> m_tc;
|
||||
|
||||
bool m_dep_elim;
|
||||
bool m_proof_irrel;
|
||||
unsigned m_nparams;
|
||||
unsigned m_nindices;
|
||||
unsigned m_nminors;
|
||||
declaration m_I_decl;
|
||||
declaration m_cases_on_decl;
|
||||
|
||||
|
||||
void init_inductive_info(name const & n) {
|
||||
m_dep_elim = inductive::has_dep_elim(m_env, n);
|
||||
m_nindices = *inductive::get_num_indices(m_env, n);
|
||||
m_nparams = *inductive::get_num_params(m_env, n);
|
||||
m_dep_elim = inductive::has_dep_elim(m_env, n);
|
||||
m_nindices = *inductive::get_num_indices(m_env, n);
|
||||
m_nparams = *inductive::get_num_params(m_env, n);
|
||||
// This tactic is bases on cases_on construction which only has
|
||||
// minor premises for the introduction rules of this datatype.
|
||||
// For non-mutually recursive datatypes inductive::get_num_intro_rules == inductive::get_num_minor_premises
|
||||
m_nminors = *inductive::get_num_intro_rules(m_env, n);
|
||||
m_I_decl = m_env.get(n);
|
||||
m_cases_on_decl = m_env.get({n, "cases_on"});
|
||||
m_nminors = *inductive::get_num_intro_rules(m_env, n);
|
||||
m_I_decl = m_env.get(n);
|
||||
m_cases_on_decl = m_env.get({n, "cases_on"});
|
||||
}
|
||||
|
||||
bool is_inversion_applicable(expr const & t) {
|
||||
|
@ -48,8 +98,9 @@ class inversion_tac {
|
|||
return false;
|
||||
if (!inductive::is_inductive_decl(m_env, const_name(fn)))
|
||||
return false;
|
||||
if (!m_env.find(name{const_name(fn), "cases_on"}) ||
|
||||
!m_env.find(name("eq")) || !m_env.find(name("heq")))
|
||||
if (!m_env.find(name{const_name(fn), "cases_on"}) || !m_env.find(name("eq")))
|
||||
return false;
|
||||
if (m_proof_irrel && !m_env.find(name("heq")))
|
||||
return false;
|
||||
init_inductive_info(const_name(fn));
|
||||
if (args.size() != m_nindices + m_nparams)
|
||||
|
@ -85,41 +136,73 @@ class inversion_tac {
|
|||
expr const & I = get_app_args(h_type, I_args);
|
||||
expr h_new_type = mk_app(I, I_args.size() - m_nindices, I_args.data());
|
||||
expr d = m_tc->whnf(m_tc->infer(h_new_type).first).first;
|
||||
unsigned eq_idx = 1;
|
||||
name eq_prefix("H");
|
||||
buffer<expr> ts;
|
||||
buffer<expr> eqs;
|
||||
buffer<expr> refls;
|
||||
name t_prefix("t");
|
||||
unsigned nidx = 1;
|
||||
auto add_eq = [&](expr const & lhs, expr const & rhs) {
|
||||
pair<expr, expr> p = mk_eq(lhs, rhs);
|
||||
expr new_eq = p.first;
|
||||
expr new_refl = p.second;
|
||||
eqs.push_back(mk_local(m_ngen.next(), g.get_unused_name(eq_prefix, eq_idx), new_eq, binder_info()));
|
||||
refls.push_back(new_refl);
|
||||
};
|
||||
for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) {
|
||||
expr t_type = binding_domain(d);
|
||||
expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info());
|
||||
expr const & index = I_args[i];
|
||||
add_eq(t, index);
|
||||
h_new_type = mk_app(h_new_type, t);
|
||||
hyps.push_back(t);
|
||||
ts.push_back(t);
|
||||
d = instantiate(binding_body(d), t);
|
||||
if (m_proof_irrel) {
|
||||
unsigned eq_idx = 1;
|
||||
name eq_prefix("H");
|
||||
buffer<expr> ts;
|
||||
buffer<expr> eqs;
|
||||
buffer<expr> refls;
|
||||
auto add_eq = [&](expr const & lhs, expr const & rhs) {
|
||||
pair<expr, expr> p = mk_eq(lhs, rhs);
|
||||
expr new_eq = p.first;
|
||||
expr new_refl = p.second;
|
||||
eqs.push_back(mk_local(m_ngen.next(), g.get_unused_name(eq_prefix, eq_idx), new_eq, binder_info()));
|
||||
refls.push_back(new_refl);
|
||||
};
|
||||
for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) {
|
||||
expr t_type = binding_domain(d);
|
||||
expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info());
|
||||
expr const & index = I_args[i];
|
||||
add_eq(t, index);
|
||||
h_new_type = mk_app(h_new_type, t);
|
||||
hyps.push_back(t);
|
||||
ts.push_back(t);
|
||||
d = instantiate(binding_body(d), t);
|
||||
}
|
||||
expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h));
|
||||
if (m_dep_elim)
|
||||
add_eq(h_new, h);
|
||||
hyps.push_back(h_new);
|
||||
expr new_type = Pi(eqs, g.get_type());
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h),
|
||||
refls));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
} else {
|
||||
// proof relevant version
|
||||
buffer<expr> ss;
|
||||
buffer<expr> ts;
|
||||
buffer<expr> refls;
|
||||
for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) {
|
||||
expr t_type = binding_domain(d);
|
||||
expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info());
|
||||
h_new_type = mk_app(h_new_type, t);
|
||||
ss.push_back(I_args[i]);
|
||||
refls.push_back(mk_refl(*m_tc, I_args[i]));
|
||||
hyps.push_back(t);
|
||||
ts.push_back(t);
|
||||
d = instantiate(binding_body(d), t);
|
||||
}
|
||||
expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h));
|
||||
ts.push_back(h_new);
|
||||
ss.push_back(h);
|
||||
refls.push_back(mk_refl(*m_tc, h));
|
||||
hyps.push_back(h_new);
|
||||
buffer<expr> eqs;
|
||||
mk_telescopic_eq(*m_tc, ss, ts, eqs);
|
||||
ts.pop_back();
|
||||
expr new_type = Pi(eqs, g.get_type());
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h),
|
||||
refls));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
}
|
||||
expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h));
|
||||
if (m_dep_elim)
|
||||
add_eq(h_new, h);
|
||||
hyps.push_back(h_new);
|
||||
expr new_type = Pi(eqs, g.get_type());
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h),
|
||||
refls));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
}
|
||||
|
||||
list<goal> apply_cases_on(goal const & g) {
|
||||
|
@ -234,46 +317,121 @@ class inversion_tac {
|
|||
throw inversion_exception("ill-typed goal");
|
||||
}
|
||||
|
||||
void throw_unification_eq_rec_failure() {
|
||||
throw inversion_exception("unification failed to eliminate eq.rec in homogeneous equality");
|
||||
}
|
||||
|
||||
// Process goal of the form: Pi (H : eq.rec A s C a s p = b), R
|
||||
// The idea is to reduce it to
|
||||
// Pi (H : a = b), R
|
||||
// when A is a hset
|
||||
// and then invoke intro_next_eq recursively.
|
||||
//
|
||||
// \remark \c type is the type of \c g after whnf
|
||||
goal intro_next_eq_rec(goal const & g, expr const & type) {
|
||||
lean_assert(is_pi(type));
|
||||
buffer<expr> hyps;
|
||||
g.get_hyps(hyps);
|
||||
expr const & eq = binding_domain(type);
|
||||
expr const & lhs = app_arg(app_fn(eq));
|
||||
expr const & rhs = app_arg(eq);
|
||||
lean_assert(is_eq_rec(lhs));
|
||||
// lhs is of the form (eq.rec A s C a s p)
|
||||
// aux_eq is a term of type ((eq.rec A s C a s p) = a)
|
||||
auto aux_eq = apply_eq_rec_eq(*m_tc, m_ios, to_list(hyps), lhs);
|
||||
if (!aux_eq)
|
||||
throw_unification_eq_rec_failure();
|
||||
buffer<expr> lhs_args;
|
||||
get_app_args(lhs, lhs_args);
|
||||
expr const & reduced_lhs = lhs_args[3];
|
||||
expr new_eq = ::lean::mk_eq(*m_tc, reduced_lhs, rhs);
|
||||
expr new_type = update_binding(type, new_eq, binding_body(type));
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
// create assignment for g
|
||||
expr A = m_tc->infer(lhs).first;
|
||||
level lvl = sort_level(m_tc->ensure_type(A).first);
|
||||
// old_eq : eq.rec A s C a s p = b
|
||||
expr old_eq = mk_local(m_ngen.next(), binding_name(type), eq, binder_info());
|
||||
// aux_eq : a = eq.rec A s C a s p
|
||||
expr trans_eq = mk_app({mk_constant(name{"eq", "trans"}, {lvl}), A, reduced_lhs, lhs, rhs, *aux_eq, old_eq});
|
||||
// trans_eq : a = b
|
||||
expr val = g.abstract(Fun(old_eq, mk_app(new_meta, trans_eq)));
|
||||
assign(g.get_name(), val);
|
||||
return intro_next_eq(new_g);
|
||||
}
|
||||
|
||||
// Process goal of the form: Ctx |- Pi (H : a == b), R when a and b have the same type
|
||||
// The idea is to reduce it to
|
||||
// Ctx, H : a = b |- R
|
||||
// This method is only used if the environment has a proof irrelevant Prop.
|
||||
//
|
||||
// \remark \c type is the type of \c g after whnf
|
||||
goal intro_next_heq(goal const & g, expr const & type) {
|
||||
lean_assert(m_proof_irrel);
|
||||
expr eq = binding_domain(type);
|
||||
lean_assert(const_name(get_app_fn(eq)) == "heq");
|
||||
buffer<expr> args;
|
||||
expr const & heq_fn = get_app_args(eq, args);
|
||||
constraint_seq cs;
|
||||
if (m_tc->is_def_eq(args[0], args[2], justification(), cs) && !cs) {
|
||||
buffer<expr> hyps;
|
||||
g.get_hyps(hyps);
|
||||
expr new_eq = mk_app(mk_constant("eq", const_levels(heq_fn)), args[0], args[1], args[3]);
|
||||
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), new_eq, binder_info());
|
||||
expr new_type = instantiate(binding_body(type), new_hyp);
|
||||
hyps.push_back(new_hyp);
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
hyps.pop_back();
|
||||
expr H = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
|
||||
expr to_eq = mk_app(mk_constant({"heq", "to_eq"}, const_levels(heq_fn)), args[0], args[1], args[3], H);
|
||||
expr val = g.abstract(Fun(H, mk_app(mk_app(new_mvar, hyps), to_eq)));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
} else {
|
||||
throw inversion_exception("unification failed to reduce heterogeneous equality into homogeneous one");
|
||||
}
|
||||
}
|
||||
|
||||
// Process goal of the form: Ctx |- Pi (H : a = b), R
|
||||
// The idea is to reduce it to
|
||||
// Ctx, H : a = b |- R
|
||||
//
|
||||
// \remark \c type is the type of \c g after whnf
|
||||
goal intro_next_eq_simple(goal const & g, expr const & type) {
|
||||
expr eq = binding_domain(type);
|
||||
lean_assert(const_name(get_app_fn(eq)) == "eq");
|
||||
buffer<expr> hyps;
|
||||
g.get_hyps(hyps);
|
||||
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
|
||||
expr new_type = instantiate(binding_body(type), new_hyp);
|
||||
hyps.push_back(new_hyp);
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(Fun(new_hyp, new_meta));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
}
|
||||
|
||||
goal intro_next_eq(goal const & g) {
|
||||
expr const & type = g.get_type();
|
||||
expr const & type = m_tc->whnf(g.get_type()).first;
|
||||
if (!is_pi(type))
|
||||
throw_ill_formed_goal();
|
||||
expr eq = binding_domain(type);
|
||||
expr const & eq_fn = get_app_fn(eq);
|
||||
if (!is_constant(eq_fn))
|
||||
throw_ill_formed_goal();
|
||||
buffer<expr> hyps;
|
||||
g.get_hyps(hyps);
|
||||
if (const_name(eq_fn) == "eq") {
|
||||
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
|
||||
expr new_type = instantiate(binding_body(type), new_hyp);
|
||||
hyps.push_back(new_hyp);
|
||||
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(Fun(new_hyp, new_meta));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
} else if (const_name(eq_fn) == "heq") {
|
||||
buffer<expr> args;
|
||||
expr const & heq_fn = get_app_args(eq, args);
|
||||
constraint_seq cs;
|
||||
if (m_tc->is_def_eq(args[0], args[2], justification(), cs) && !cs) {
|
||||
expr new_eq = mk_app(mk_constant("eq", const_levels(heq_fn)), args[0], args[1], args[3]);
|
||||
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), new_eq, binder_info());
|
||||
expr new_type = instantiate(binding_body(type), new_hyp);
|
||||
hyps.push_back(new_hyp);
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
hyps.pop_back();
|
||||
expr H = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
|
||||
expr to_eq = mk_app(mk_constant({"heq", "to_eq"}, const_levels(heq_fn)), args[0], args[1], args[3], H);
|
||||
expr val = g.abstract(Fun(H, mk_app(mk_app(new_mvar, hyps), to_eq)));
|
||||
assign(g.get_name(), val);
|
||||
return new_g;
|
||||
expr const & lhs = app_arg(app_fn(eq));
|
||||
if (!m_proof_irrel && is_eq_rec(lhs)) {
|
||||
return intro_next_eq_rec(g, type);
|
||||
} else {
|
||||
throw inversion_exception("unification failed to reduce heterogeneous equality into homogeneous one");
|
||||
return intro_next_eq_simple(g, type);
|
||||
}
|
||||
} else if (m_proof_irrel && const_name(eq_fn) == "heq") {
|
||||
return intro_next_heq(g, type);
|
||||
} else {
|
||||
throw_ill_formed_goal();
|
||||
}
|
||||
|
@ -293,6 +451,22 @@ class inversion_tac {
|
|||
}
|
||||
}
|
||||
|
||||
// The no_confusion constructions uses lifts in the proof relevant version.
|
||||
// We must apply lift.down to eliminate the auxiliary lift.
|
||||
expr lift_down(expr const & v) {
|
||||
if (!m_proof_irrel) {
|
||||
expr v_type = m_tc->whnf(m_tc->infer(v).first).first;
|
||||
if (!is_app(v_type))
|
||||
throw_unification_eq_rec_failure();
|
||||
expr const & lift = app_fn(v_type);
|
||||
if (!is_constant(lift) || const_name(lift) != "lift")
|
||||
throw_unification_eq_rec_failure();
|
||||
return mk_app(mk_constant(name{"lift", "down"}, const_levels(lift)), app_arg(v_type), v);
|
||||
} else {
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
optional<goal> unify_eqs(goal g, unsigned neqs) {
|
||||
if (neqs == 0)
|
||||
return optional<goal>(g); // done
|
||||
|
@ -307,7 +481,7 @@ class inversion_tac {
|
|||
expr lhs = m_tc->whnf(eq_args[1]).first;
|
||||
expr rhs = m_tc->whnf(eq_args[2]).first;
|
||||
constraint_seq cs;
|
||||
if (m_tc->is_def_eq(lhs, rhs, justification(), cs) && !cs) {
|
||||
if (m_proof_irrel && m_tc->is_def_eq(lhs, rhs, justification(), cs) && !cs) {
|
||||
// deletion transition: t == t
|
||||
hyps.pop_back(); // remove t == t equality
|
||||
expr new_type = g.get_type();
|
||||
|
@ -337,18 +511,19 @@ class inversion_tac {
|
|||
if (const_name(lhs_fn) == const_name(rhs_fn)) {
|
||||
// injectivity transition
|
||||
expr new_type = binding_domain(m_tc->whnf(m_tc->infer(no_confusion).first).first);
|
||||
hyps.pop_back(); // remove processed equality
|
||||
if (m_proof_irrel)
|
||||
hyps.pop_back(); // remove processed equality
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
expr val = g.abstract(mk_app(no_confusion, new_meta));
|
||||
expr val = g.abstract(lift_down(mk_app(no_confusion, new_meta)));
|
||||
assign(g.get_name(), val);
|
||||
unsigned A_nparams = *inductive::get_num_params(m_env, const_name(A_fn));
|
||||
lean_assert(lhs_args.size() >= A_nparams);
|
||||
return unify_eqs(new_g, neqs - 1 + lhs_args.size() - A_nparams);
|
||||
} else {
|
||||
// conflict transition, eq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules.
|
||||
expr val = g.abstract(no_confusion);
|
||||
expr val = g.abstract(lift_down(no_confusion));
|
||||
assign(g.get_name(), val);
|
||||
return optional<goal>(); // goal has been solved
|
||||
}
|
||||
|
@ -380,12 +555,20 @@ class inversion_tac {
|
|||
expr deps_g_type = Pi(deps, g_type);
|
||||
level eq_rec_lvl1 = sort_level(m_tc->ensure_type(deps_g_type).first);
|
||||
level eq_rec_lvl2 = sort_level(m_tc->ensure_type(A).first);
|
||||
expr tformer = Fun(rhs, deps_g_type);
|
||||
expr tformer;
|
||||
if (m_proof_irrel)
|
||||
tformer = Fun(rhs, deps_g_type);
|
||||
else
|
||||
tformer = Fun(rhs, Fun(eq, deps_g_type));
|
||||
expr eq_rec = mk_constant(name{"eq", "rec"}, {eq_rec_lvl1, eq_rec_lvl2});
|
||||
eq_rec = mk_app(eq_rec, A, lhs, tformer);
|
||||
buffer<expr> new_hyps;
|
||||
new_hyps.append(non_deps);
|
||||
expr new_type = instantiate(abstract(deps_g_type, rhs), lhs);
|
||||
expr new_type = instantiate(abstract_local(deps_g_type, rhs), lhs);
|
||||
if (!m_proof_irrel) {
|
||||
new_type = abstract_local(new_type, eq);
|
||||
new_type = instantiate(new_type, mk_refl(*m_tc, lhs));
|
||||
}
|
||||
for (unsigned i = 0; i < deps.size(); i++) {
|
||||
expr new_hyp = mk_local(m_ngen.next(), binding_name(new_type), binding_domain(new_type),
|
||||
binding_info(new_type));
|
||||
|
@ -402,9 +585,10 @@ class inversion_tac {
|
|||
return unify_eqs(new_g, neqs-1);
|
||||
} else if (is_local(lhs)) {
|
||||
// flip equation and reduce to previous case
|
||||
hyps.pop_back(); // remove processed equality
|
||||
expr symm_eq = mk_eq(rhs, lhs).first;
|
||||
expr new_type = mk_arrow(symm_eq, g_type);
|
||||
if (m_proof_irrel)
|
||||
hyps.pop_back(); // remove processed equality
|
||||
expr symm_eq = mk_eq(rhs, lhs).first;
|
||||
expr new_type = mk_arrow(symm_eq, g_type);
|
||||
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
|
||||
expr new_meta = mk_app(new_mvar, hyps);
|
||||
goal new_g(new_meta, new_type);
|
||||
|
@ -430,10 +614,11 @@ class inversion_tac {
|
|||
}
|
||||
|
||||
public:
|
||||
inversion_tac(environment const & env, proof_state const & ps, list<name> const & ids):
|
||||
m_env(env), m_ps(ps), m_ids(ids),
|
||||
inversion_tac(environment const & env, io_state const & ios, proof_state const & ps, list<name> const & ids):
|
||||
m_env(env), m_ios(ios), m_ps(ps), m_ids(ids),
|
||||
m_ngen(m_ps.get_ngen()), m_subst(m_ps.get_subst()),
|
||||
m_tc(mk_type_checker(m_env, m_ngen.mk_child(), m_ps.relax_main_opaque())) {
|
||||
m_proof_irrel = m_env.prop_proof_irrel();
|
||||
}
|
||||
|
||||
optional<proof_state> execute(name const & n) {
|
||||
|
@ -463,8 +648,8 @@ public:
|
|||
};
|
||||
|
||||
tactic inversion_tactic(name const & n, list<name> const & ids) {
|
||||
auto fn = [=](environment const & env, io_state const &, proof_state const & ps) -> optional<proof_state> {
|
||||
inversion_tac tac(env, ps, ids);
|
||||
auto fn = [=](environment const & env, io_state const & ios, proof_state const & ps) -> optional<proof_state> {
|
||||
inversion_tac tac(env, ios, ps, ids);
|
||||
return tac.execute(n);
|
||||
};
|
||||
return tactic01(fn);
|
||||
|
|
|
@ -42,4 +42,9 @@ namespace foo
|
|||
|
||||
definition foo.inj₄ (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : eq.rec (eq.rec (eq.rec b₁ (foo.inj₁ H)) (foo.inj₂ H)) (foo.inj₃ H) = b₂ :=
|
||||
(foo.inj H).2.2.2
|
||||
|
||||
definition foo.inj_inv (e₁ : A₁ = A₂) (e₂ : eq.rec B₁ e₁ = B₂) (e₃ : eq.rec a₁ e₁ = a₂) (e₄ : eq.rec (eq.rec (eq.rec b₁ e₁) e₂) e₃ = b₂) :
|
||||
mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂ :=
|
||||
eq.rec_on e₄ (eq.rec_on e₃ (eq.rec_on e₂ (eq.rec_on e₁ rfl)))
|
||||
|
||||
end foo
|
||||
|
|
Loading…
Reference in a new issue