feat(library/hott): finish porting of natural_transformation.lean
This commit is contained in:
parent
ae618c20fb
commit
67f71ee376
2 changed files with 30 additions and 23 deletions
|
@ -35,34 +35,41 @@ namespace natural_transformation
|
|||
|
||||
infixr `∘n`:60 := compose
|
||||
|
||||
/-definition foo (C : Precategory) (a b : C) (f g : hom a b) (p q : f ≈ g) : p ≈ q :=
|
||||
@truncation.is_hset.elim _ !homH f g p q
|
||||
|
||||
definition nt_is_hset {F G : functor C D} : is_hset (F ⟹ G) := sorry
|
||||
|
||||
definition eta_nat_path {η₁ η₂ : F ⟹ G} (H1 : natural_map η₁ ≈ natural_map η₂)
|
||||
(H2 : (H1 ▹ naturality η₁) ≈ naturality η₂) : η₁ ≈ η₂ :=
|
||||
rec_on η₁ (λ eta1 nat1, rec_on η₂ (λ eta2 nat2, sorry))-/
|
||||
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) [fext : funext] :
|
||||
η₃ ∘n (η₂ ∘n η₁) ≈ (η₃ ∘n η₂) ∘n η₁ :=
|
||||
have aux4 [visible] : is_hprop (Π (a b : C) (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a ≈ ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f),
|
||||
have aux [visible] : is_hprop (Π (a b : C) (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a ≈ ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f),
|
||||
begin
|
||||
apply trunc_pi, intro a,
|
||||
apply trunc_pi, intro b,
|
||||
apply trunc_pi, intro f,
|
||||
apply (@succ_is_trunc _ -1 _ (I f ∘ (η₃ ∘n η₂) a ∘ η₁ a) (((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f)),
|
||||
repeat (apply trunc_pi; intros),
|
||||
apply (succ_is_trunc -1 (I a_2 ∘ (η₃ ∘n η₂) a ∘ η₁ a)),
|
||||
end,
|
||||
path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !assoc)) !is_hprop.elim
|
||||
dcongr_arg2 mk (funext.path_forall _ _ (λ x, !assoc)) !is_hprop.elim
|
||||
|
||||
exit
|
||||
protected definition id {C D : Precategory} {F : functor C D} : natural_transformation F F :=
|
||||
mk (λa, id) (λa b f, !id_right ⬝ (!id_left⁻¹))
|
||||
protected definition ID {C D : Precategory} (F : functor C D) : natural_transformation F F := id
|
||||
|
||||
protected theorem id_left (η : F ⟹ G) [fext : funext] : natural_transformation.compose id η ≈ η :=
|
||||
rec_on η (λf H, path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !id_left)) sorry)
|
||||
protected theorem id_left (η : F ⟹ G) [fext : funext.{l_1 l_4}] :
|
||||
id ∘n η ≈ η :=
|
||||
begin
|
||||
apply (rec_on η), intros (f, H),
|
||||
fapply (path.dcongr_arg2 mk),
|
||||
apply (funext.path_forall _ f (λa, !id_left)),
|
||||
assert (H1 : is_hprop (Π {a b : C} (g : hom a b), G g ∘ f a ≈ f b ∘ F g)),
|
||||
repeat (apply trunc_pi; intros),
|
||||
apply (succ_is_trunc -1 (G a_2 ∘ f a) (f a_1 ∘ F a_2)),
|
||||
apply (!is_hprop.elim),
|
||||
end
|
||||
|
||||
protected theorem id_right (η : F ⟹ G) [fext : funext] : natural_transformation.compose η id ≈ η :=
|
||||
rec (λf H, path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !id_right)) sorry) η
|
||||
protected theorem id_right (η : F ⟹ G) [fext : funext.{l_1 l_4}] :
|
||||
η ∘n id ≈ η :=
|
||||
begin
|
||||
apply (rec_on η), intros (f, H),
|
||||
fapply (path.dcongr_arg2 mk),
|
||||
apply (funext.path_forall _ f (λa, !id_right)),
|
||||
assert (H1 : is_hprop (Π {a b : C} (g : hom a b), G g ∘ f a ≈ f b ∘ F g)),
|
||||
repeat (apply trunc_pi; intros),
|
||||
apply (succ_is_trunc -1 (G a_2 ∘ f a) (f a_1 ∘ F a_2)),
|
||||
apply (!is_hprop.elim),
|
||||
end
|
||||
|
||||
end natural_transformation
|
||||
|
|
|
@ -79,12 +79,12 @@ namespace truncation
|
|||
variables {A B : Type}
|
||||
|
||||
-- maybe rename to is_trunc_succ.mk
|
||||
definition is_trunc_succ (A : Type) {n : trunc_index} [H : ∀x y : A, is_trunc n (x ≈ y)]
|
||||
definition is_trunc_succ (A : Type) (n : trunc_index) [H : ∀x y : A, is_trunc n (x ≈ y)]
|
||||
: is_trunc n.+1 A :=
|
||||
is_trunc.mk (λ x y, !is_trunc.to_internal)
|
||||
|
||||
-- maybe rename to is_trunc_succ.elim
|
||||
definition succ_is_trunc {n : trunc_index} [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) :=
|
||||
definition succ_is_trunc (n : trunc_index) [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) :=
|
||||
is_trunc.mk (!is_trunc.to_internal x y)
|
||||
|
||||
/- contractibility -/
|
||||
|
|
Loading…
Reference in a new issue