From 685049988c78b7732a93b5849ad410fc7871fc26 Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Mon, 8 Feb 2016 13:57:10 -0500 Subject: [PATCH] feat(theories/analysis): define metric topology --- library/theories/analysis/metric_space.lean | 104 +++++++++++++++++++- library/theories/analysis/normed_space.lean | 4 + 2 files changed, 107 insertions(+), 1 deletion(-) diff --git a/library/theories/analysis/metric_space.lean b/library/theories/analysis/metric_space.lean index 75c526b93..2f9e32520 100644 --- a/library/theories/analysis/metric_space.lean +++ b/library/theories/analysis/metric_space.lean @@ -5,7 +5,7 @@ Author: Jeremy Avigad Metric spaces. -/ -import data.real.complete data.pnat data.list.sort +import data.real.complete data.pnat data.list.sort ..topology.basic data.set open nat real eq.ops classical structure metric_space [class] (M : Type) : Type := @@ -478,6 +478,108 @@ theorem id_continuous : continuous (λ x : M, x) := end metric_space_M_N +section topology +open set prod topology + +variables {V : Type} [Vmet : metric_space V] +include Vmet + +definition open_ball (x : V) (ε : ℝ) := {y ∈ univ | dist x y < ε} + + +theorem mem_open_ball (x : V) {ε : ℝ} (H : ε > 0) : x ∈ open_ball x ε := + suffices x ∈ univ ∧ dist x x < ε, from this, + and.intro !mem_univ (by rewrite dist_self; assumption) + +definition closed_ball (x : V) (ε : ℝ) := {y ∈ univ | dist x y ≤ ε} + +theorem closed_ball_eq_comp (x : V) (ε : ℝ) : closed_ball x ε = -{y ∈ univ | dist x y > ε} := + begin + apply ext, + intro y, + apply iff.intro, + intro Hx, + apply mem_comp, + intro Hxmem, + cases Hxmem with _ Hgt, + cases Hx with _ Hle, + apply not_le_of_gt Hgt Hle, + intro Hx, + note Hx' := not_mem_of_mem_comp Hx, + split, + apply mem_univ, + apply le_of_not_gt, + intro Hgt, + apply Hx', + split, + apply mem_univ, + assumption + end + +omit Vmet +definition open_sets_basis (V : Type) [metric_space V] := + image (λ pair : V × ℝ, open_ball (pr1 pair) (pr2 pair)) univ + +definition open_sets (V : Type) [metric_space V] := opens_generated_by (open_sets_basis V) + +theorem univ_in_opens (V : Type) [metric_space V] : univ ∈ open_sets V := + !opens_generated_by.univ_mem + +include Vmet + +theorem open_ball_mem_open_sets_basis (x : V) (ε : ℝ) : (open_ball x ε) ∈ (open_sets_basis V) := + mem_image !mem_univ rfl + +theorem sUnion_in_opens {S : set (set V)} (HS : S ⊆ open_sets V) : ⋃₀ S ∈ open_sets V := + opens_generated_by.sUnion_mem HS + +theorem inter_in_opens : ∀₀ S ∈ open_sets V, ∀₀ T ∈ open_sets V, S ∩ T ∈ open_sets V := + begin intros, apply opens_generated_by.inter_mem, repeat eassumption end + +omit Vmet +definition norm_topology [instance] (V : Type) [metric_space V] : topology V := +⦃ topology, + opens := open_sets V, + univ_mem_opens := univ_in_opens V, + sUnion_mem_opens := by intros; apply sUnion_in_opens; assumption, -- weird + inter_mem_opens := inter_in_opens +⦄ +include Vmet + +theorem open_ball_open (x : V) (ε : ℝ) : Open (open_ball x ε) := + by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis + +theorem closed_ball_closed (x : V) {ε : ℝ} (H : ε > 0) : closed (closed_ball x ε) := + begin + apply iff.mpr !closed_iff_Open_comp, + rewrite closed_ball_eq_comp, + rewrite comp_comp, + apply Open_of_forall_exists_Open_nbhd, + intro y Hy, + cases Hy with _ Hxy, + existsi open_ball y (dist x y - ε), + split, + apply open_ball_open, + split, + apply mem_open_ball, + apply sub_pos_of_lt Hxy, + intros y' Hy', + cases Hy' with _ Hxy'd, + rewrite dist_comm at Hxy'd, + split, + apply mem_univ, + apply lt_of_not_ge, + intro Hxy', + apply not_lt_self (dist x y), + exact calc + dist x y ≤ dist x y' + dist y' y : dist_triangle + ... ≤ ε + dist y' y : add_le_add_right Hxy' + ... < ε + (dist x y - ε) : add_lt_add_left Hxy'd + ... = dist x y : by rewrite [add.comm, sub_add_cancel] + end + +end topology + end analysis /- complete metric spaces -/ diff --git a/library/theories/analysis/normed_space.lean b/library/theories/analysis/normed_space.lean index bd114ae5e..60541bd65 100644 --- a/library/theories/analysis/normed_space.lean +++ b/library/theories/analysis/normed_space.lean @@ -45,6 +45,10 @@ namespace analysis proposition norm_neg (v : V) : ∥ -v ∥ = ∥ v ∥ := have abs (1 : ℝ) = 1, from abs_of_nonneg zero_le_one, by+ rewrite [-@neg_one_smul ℝ V, norm_smul, abs_neg, this, one_mul] + + proposition norm_sub (u v : V) : ∥u - v∥ = ∥v - u∥ := + by rewrite [-norm_neg, neg_sub] + end analysis section