feat(library/data/finset/card.lean): begin theory of cardinality
This commit is contained in:
parent
9e04d09381
commit
68f7afa053
1 changed files with 61 additions and 0 deletions
61
library/data/finset/card.lean
Normal file
61
library/data/finset/card.lean
Normal file
|
@ -0,0 +1,61 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Jeremy Avigad
|
||||
|
||||
Cardinality calculations for finite sets.
|
||||
-/
|
||||
import data.finset.comb
|
||||
open nat eq.ops
|
||||
|
||||
namespace finset
|
||||
|
||||
variable {A : Type}
|
||||
variable [deceq : decidable_eq A]
|
||||
include deceq
|
||||
|
||||
theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) :=
|
||||
finset.induction_on s₂
|
||||
(show card s₁ + card ∅ = card (s₁ ∪ ∅) + card (s₁ ∩ ∅),
|
||||
by rewrite [union_empty, card_empty, inter_empty])
|
||||
(take s₂ a,
|
||||
assume ans2: a ∉ s₂,
|
||||
assume IH : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂),
|
||||
show card s₁ + card (insert a s₂) = card (s₁ ∪ (insert a s₂)) + card (s₁ ∩ (insert a s₂)),
|
||||
from decidable.by_cases
|
||||
(assume as1 : a ∈ s₁,
|
||||
assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'),
|
||||
begin
|
||||
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
||||
rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter.distrib_left, inter.comm],
|
||||
rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc],
|
||||
rewrite IH
|
||||
end)
|
||||
(assume ans1 : a ∉ s₁,
|
||||
assert H : a ∉ s₁ ∪ s₂, from assume H',
|
||||
or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2),
|
||||
begin
|
||||
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
||||
rewrite [card_insert_of_not_mem H, insert_eq, inter.distrib_left, inter.comm],
|
||||
rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm],
|
||||
rewrite [-add.assoc, IH]
|
||||
end))
|
||||
|
||||
theorem card_union (s₁ s₂ : finset A) : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
|
||||
calc
|
||||
card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
|
||||
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card
|
||||
|
||||
theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : disjoint s₁ s₂) :
|
||||
card (s₁ ∪ s₂) = card s₁ + card s₂ :=
|
||||
by rewrite [card_union, ↑disjoint at H, inter_empty_of_disjoint H]
|
||||
|
||||
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ :=
|
||||
have H1 : disjoint s₁ (s₂ \ s₁),
|
||||
from disjoint.intro (take x, assume H1 H2, not_mem_of_mem_diff H2 H1),
|
||||
calc
|
||||
card s₂ = card (s₁ ∪ (s₂ \ s₁)) : union_diff_cancel H
|
||||
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
|
||||
... ≥ card s₁ : le_add_right
|
||||
|
||||
end finset
|
Loading…
Reference in a new issue