refactor(library): add 'init' folder
This commit is contained in:
parent
8dfd22e66c
commit
697d4359e3
73 changed files with 913 additions and 973 deletions
|
@ -7,9 +7,6 @@ Author: Leonardo de Moura
|
|||
|
||||
General operations on functions.
|
||||
-/
|
||||
|
||||
import general_notation
|
||||
|
||||
namespace function
|
||||
|
||||
variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type}
|
||||
|
|
|
@ -8,8 +8,7 @@ Authors: Jeremy Avigad, Leonardo de Moura
|
|||
Various multiplicative and additive structures. Partially modeled on Isabelle's library.
|
||||
-/
|
||||
|
||||
import logic.eq logic.connectives
|
||||
import data.unit data.sigma data.prod
|
||||
import logic.eq data.unit data.sigma data.prod
|
||||
import algebra.function algebra.binary
|
||||
|
||||
open eq eq.ops -- note: ⁻¹ will be overloaded
|
||||
|
|
|
@ -15,7 +15,7 @@ These might not hold constructively in some applications, but we can define addi
|
|||
with both < and ≤ as needed.
|
||||
-/
|
||||
|
||||
import logic.eq logic.connectives
|
||||
import logic.eq
|
||||
import data.unit data.sigma data.prod
|
||||
import algebra.function algebra.binary
|
||||
|
||||
|
|
|
@ -9,8 +9,7 @@ Partially ordered additive groups. Modeled on Isabelle's library. The comments b
|
|||
we could refine the structures, though we would have to declare more inheritance paths.
|
||||
-/
|
||||
|
||||
import logic.eq logic.connectives
|
||||
import data.unit data.sigma data.prod
|
||||
import logic.eq data.unit data.sigma data.prod
|
||||
import algebra.function algebra.binary
|
||||
import algebra.group algebra.order
|
||||
|
||||
|
|
|
@ -8,8 +8,6 @@ Author: Jeremy Avigad
|
|||
General properties of relations, and classes for equivalence relations and congruences.
|
||||
-/
|
||||
|
||||
import logic.prop
|
||||
|
||||
namespace relation
|
||||
|
||||
/- properties of binary relations -/
|
||||
|
|
|
@ -9,8 +9,7 @@ Structures with multiplicative and additive components, including semirings, rin
|
|||
The development is modeled after Isabelle's library.
|
||||
-/
|
||||
|
||||
import logic.eq logic.connectives
|
||||
import data.unit data.sigma data.prod
|
||||
import logic.eq data.unit data.sigma data.prod
|
||||
import algebra.function algebra.binary algebra.group
|
||||
|
||||
open eq eq.ops
|
||||
|
|
|
@ -1,8 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.unit.decl
|
||||
|
||||
inductive bool : Type :=
|
||||
ff : bool,
|
||||
tt : bool
|
|
@ -1,4 +1,4 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.bool.decl data.bool.ops data.bool.thms
|
||||
import data.bool.thms
|
||||
|
|
|
@ -1,9 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.bool.ops
|
||||
import logic.connectives logic.decidable logic.inhabited
|
||||
|
||||
import logic.eq
|
||||
open eq eq.ops decidable
|
||||
|
||||
namespace bool
|
||||
|
|
|
@ -4,10 +4,7 @@
|
|||
|
||||
-- Empty type
|
||||
-- ----------
|
||||
|
||||
import logic.cast
|
||||
|
||||
inductive empty : Type
|
||||
import logic.cast logic.subsingleton
|
||||
|
||||
namespace empty
|
||||
protected theorem elim (A : Type) (H : empty) : A :=
|
||||
|
@ -17,6 +14,9 @@ namespace empty
|
|||
subsingleton.intro (λ a b, !elim a)
|
||||
end empty
|
||||
|
||||
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
|
||||
take (a b : empty), decidable.inl (!empty.elim a)
|
||||
|
||||
definition tneg.tneg (A : Type) := A → empty
|
||||
prefix `~` := tneg.tneg
|
||||
namespace tneg
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
-- The integers, with addition, multiplication, and subtraction.
|
||||
|
||||
import data.nat.basic data.nat.order data.nat.sub data.prod data.quotient tools.tactic algebra.relation
|
||||
import data.nat.basic data.nat.order data.nat.sub data.prod data.quotient algebra.relation
|
||||
import algebra.binary
|
||||
import tools.fake_simplifier
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import logic tools.helper_tactics tools.tactic data.nat.basic
|
||||
import logic tools.helper_tactics data.nat.basic
|
||||
|
||||
-- Theory list
|
||||
-- ===========
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
-- Basic operations on the natural numbers.
|
||||
|
||||
import .decl data.num algebra.binary
|
||||
import data.num algebra.binary
|
||||
|
||||
open eq.ops binary
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
-- This is a continuation of the development of the natural numbers, with a general way of
|
||||
-- defining recursive functions, and definitions of div, mod, and gcd.
|
||||
|
||||
import data.nat.sub logic data.prod.wf
|
||||
import data.nat.sub logic
|
||||
import algebra.relation
|
||||
import tools.fake_simplifier
|
||||
|
||||
|
|
|
@ -1,17 +0,0 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.unit.decl
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
||||
inductive pos_num : Type :=
|
||||
one : pos_num,
|
||||
bit1 : pos_num → pos_num,
|
||||
bit0 : pos_num → pos_num
|
||||
|
||||
inductive num : Type :=
|
||||
zero : num,
|
||||
pos : pos_num → num
|
|
@ -3,4 +3,4 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.decl data.num.ops data.num.thms
|
||||
import data.num.thms
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.ops logic.eq
|
||||
import logic.eq
|
||||
open bool
|
||||
|
||||
namespace pos_num
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.eq logic.inhabited logic.decidable
|
||||
import logic.eq
|
||||
open eq.ops decidable
|
||||
|
||||
inductive option (A : Type) : Type :=
|
||||
|
@ -16,7 +16,7 @@ namespace option
|
|||
trivial
|
||||
|
||||
theorem not_is_none_some {A : Type} (a : A) : ¬ is_none (some a) :=
|
||||
not_false_trivial
|
||||
not_false
|
||||
|
||||
theorem none_ne_some {A : Type} (a : A) : none ≠ some a :=
|
||||
assume H, no_confusion H
|
||||
|
|
|
@ -1,29 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.prod.decl
|
||||
Author: Leonardo de Moura, Jeremy Avigad
|
||||
-/
|
||||
|
||||
import data.unit.decl logic.eq
|
||||
|
||||
structure prod (A B : Type) :=
|
||||
mk :: (pr1 : A) (pr2 : B)
|
||||
|
||||
definition pair := @prod.mk
|
||||
|
||||
namespace prod
|
||||
notation A * B := prod A B
|
||||
notation A × B := prod A B
|
||||
namespace low_precedence_times
|
||||
reserve infixr `*`:30 -- conflicts with notation for multiplication
|
||||
infixr `*` := prod
|
||||
end low_precedence_times
|
||||
|
||||
notation `pr₁` := pr1
|
||||
notation `pr₂` := pr2
|
||||
|
||||
-- notation for n-ary tuples
|
||||
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||||
end prod
|
|
@ -1,4 +1,4 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||||
import data.prod.decl data.prod.thms data.prod.wf
|
||||
import data.prod.thms
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||||
import data.prod.decl logic.inhabited logic.eq logic.decidable
|
||||
|
||||
import logic.eq
|
||||
open inhabited decidable eq.ops
|
||||
|
||||
namespace prod
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
-- Theory data.quotient
|
||||
-- ====================
|
||||
|
||||
import logic tools.tactic data.subtype logic.cast algebra.relation data.prod
|
||||
import logic data.subtype logic.cast algebra.relation data.prod
|
||||
import logic.instances
|
||||
import .util
|
||||
|
||||
|
|
|
@ -2,8 +2,7 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import algebra.relation logic.nonempty data.subtype
|
||||
import logic.axioms.classical logic.axioms.hilbert logic.axioms.funext
|
||||
import algebra.relation data.subtype logic.axioms.classical logic.axioms.hilbert logic.axioms.funext
|
||||
import .basic
|
||||
|
||||
namespace quotient
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
import logic.eq logic.heq data.unit data.num.ops
|
||||
|
||||
structure sigma {A : Type} (B : A → Type) :=
|
||||
dpair :: (dpr1 : A) (dpr2 : B dpr1)
|
||||
|
||||
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
||||
|
||||
namespace sigma
|
||||
|
||||
notation `dpr₁` := dpr1
|
||||
notation `dpr₂` := dpr2
|
||||
|
||||
namespace ops
|
||||
postfix `.1`:(max+1) := dpr1
|
||||
postfix `.2`:(max+1) := dpr2
|
||||
notation `⟨` t:(foldr `,` (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||||
end ops
|
||||
end sigma
|
|
@ -1,4 +1,4 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
import data.sigma.decl data.sigma.thms data.sigma.wf
|
||||
import data.sigma.thms
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
import data.sigma.decl
|
||||
import logic.cast
|
||||
open inhabited eq.ops sigma.ops
|
||||
|
||||
namespace sigma
|
||||
|
|
|
@ -1,11 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.bool.decl
|
||||
|
||||
inductive char : Type :=
|
||||
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
|
||||
|
||||
inductive string : Type :=
|
||||
empty : string,
|
||||
str : char → string → string
|
|
@ -1,4 +1,4 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.string.decl data.string.thms
|
||||
import data.string.thms
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.string.decl data.bool
|
||||
import data.bool
|
||||
open bool inhabited
|
||||
|
||||
namespace char
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import logic.inhabited logic.eq logic.decidable
|
||||
|
||||
open decidable
|
||||
|
||||
structure subtype {A : Type} (P : A → Prop) :=
|
||||
|
|
|
@ -7,14 +7,8 @@ Authors: Leonardo de Moura, Jeremy Avigad
|
|||
|
||||
The sum type, aka disjoint union.
|
||||
-/
|
||||
|
||||
import logic.prop logic.inhabited logic.decidable
|
||||
open inhabited decidable eq.ops
|
||||
|
||||
inductive sum (A B : Type) : Type :=
|
||||
inl : A → sum A B,
|
||||
inr : B → sum A B
|
||||
|
||||
namespace sum
|
||||
notation A ⊎ B := sum A B
|
||||
notation A + B := sum A B
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
inductive unit.{l} : Type.{l} :=
|
||||
star : unit
|
|
@ -1,9 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
inductive unit.{l} : Type.{l} :=
|
||||
star : unit
|
||||
|
||||
namespace unit
|
||||
notation `⋆` := star
|
||||
end unit
|
|
@ -1,4 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.unit.decl data.unit.thms data.unit.insts
|
||||
import data.unit.thms data.unit.insts
|
||||
namespace unit
|
||||
notation `⋆` := star
|
||||
end unit
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.unit.decl data.unit.thms logic.decidable logic.inhabited
|
||||
import data.unit.thms logic.subsingleton
|
||||
open decidable
|
||||
|
||||
namespace unit
|
||||
|
@ -9,7 +9,7 @@ namespace unit
|
|||
subsingleton.intro (λ a b, equal a b)
|
||||
|
||||
protected definition is_inhabited [instance] : inhabited unit :=
|
||||
inhabited.mk ⋆
|
||||
inhabited.mk unit.star
|
||||
|
||||
protected definition has_decidable_eq [instance] : decidable_eq unit :=
|
||||
take (a b : unit), inl (equal a b)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.unit.decl logic.eq
|
||||
import logic.eq
|
||||
|
||||
namespace unit
|
||||
protected theorem equal (a b : unit) : a = b :=
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
-- o Try doing these proofs with tactics.
|
||||
-- o Try using the simplifier on some of these proofs.
|
||||
|
||||
import general_notation type algebra.function tools.tactic
|
||||
import algebra.function
|
||||
|
||||
open function
|
||||
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import general_notation data.bool.decl
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
namespace bool
|
||||
definition cond {A : Type} (b : bool) (t e : A) :=
|
72
library/init/datatypes.lean
Normal file
72
library/init/datatypes.lean
Normal file
|
@ -0,0 +1,72 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Leonardo de Moura
|
||||
|
||||
Basic datatypes
|
||||
-/
|
||||
prelude
|
||||
notation `Prop` := Type.{0}
|
||||
notation [parsing-only] `Type'` := Type.{_+1}
|
||||
notation [parsing-only] `Type₊` := Type.{_+1}
|
||||
notation `Type₁` := Type.{1}
|
||||
notation `Type₂` := Type.{2}
|
||||
notation `Type₃` := Type.{3}
|
||||
|
||||
inductive unit.{l} : Type.{l} :=
|
||||
star : unit
|
||||
|
||||
inductive true : Prop :=
|
||||
intro : true
|
||||
|
||||
inductive false : Prop
|
||||
|
||||
inductive empty : Type
|
||||
|
||||
inductive eq {A : Type} (a : A) : A → Prop :=
|
||||
refl : eq a a
|
||||
|
||||
inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
|
||||
refl : heq a a
|
||||
|
||||
structure prod (A B : Type) :=
|
||||
mk :: (pr1 : A) (pr2 : B)
|
||||
|
||||
inductive and (a b : Prop) : Prop :=
|
||||
intro : a → b → and a b
|
||||
|
||||
inductive sum (A B : Type) : Type :=
|
||||
inl : A → sum A B,
|
||||
inr : B → sum A B
|
||||
|
||||
inductive or (a b : Prop) : Prop :=
|
||||
intro_left : a → or a b,
|
||||
intro_right : b → or a b
|
||||
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
||||
inductive pos_num : Type :=
|
||||
one : pos_num,
|
||||
bit1 : pos_num → pos_num,
|
||||
bit0 : pos_num → pos_num
|
||||
|
||||
inductive num : Type :=
|
||||
zero : num,
|
||||
pos : pos_num → num
|
||||
|
||||
inductive bool : Type :=
|
||||
ff : bool,
|
||||
tt : bool
|
||||
|
||||
inductive char : Type :=
|
||||
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
|
||||
|
||||
inductive string : Type :=
|
||||
empty : string,
|
||||
str : char → string → string
|
||||
|
||||
inductive nat :=
|
||||
zero : nat,
|
||||
succ : nat → nat
|
|
@ -5,3 +5,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation init.tactic init.logic
|
||||
import init.relation init.wf init.nat init.wf_k init.prod init.priority
|
||||
import init.bool init.num init.sigma
|
||||
|
|
617
library/init/logic.lean
Normal file
617
library/init/logic.lean
Normal file
|
@ -0,0 +1,617 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
-/
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
-- implication
|
||||
-- -----------
|
||||
|
||||
definition imp (a b : Prop) : Prop := a → b
|
||||
|
||||
-- make c explicit and rename to false.elim
|
||||
theorem false_elim {c : Prop} (H : false) : c :=
|
||||
false.rec c H
|
||||
|
||||
definition trivial := true.intro
|
||||
|
||||
definition not (a : Prop) := a → false
|
||||
prefix `¬` := not
|
||||
|
||||
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
|
||||
false.rec b (H2 H1)
|
||||
|
||||
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
||||
assume Ha : a, absurd (H1 Ha) H2
|
||||
|
||||
-- not
|
||||
-- ---
|
||||
|
||||
theorem not_false : ¬false :=
|
||||
assume H : false, H
|
||||
|
||||
theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd Ha Hna
|
||||
|
||||
theorem not_intro {a : Prop} (H : a → false) : ¬a := H
|
||||
|
||||
theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2
|
||||
|
||||
theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
||||
|
||||
theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b :=
|
||||
assume Hb : b, absurd (assume Ha : a, Hb) H
|
||||
|
||||
-- eq
|
||||
-- --
|
||||
|
||||
notation a = b := eq a b
|
||||
definition rfl {A : Type} {a : A} := eq.refl a
|
||||
|
||||
-- proof irrelevance is built in
|
||||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||||
rfl
|
||||
|
||||
namespace eq
|
||||
variables {A : Type}
|
||||
variables {a b c a': A}
|
||||
|
||||
definition drec_on {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
|
||||
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
||||
|
||||
theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) :=
|
||||
rfl
|
||||
|
||||
theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ :=
|
||||
!proof_irrel
|
||||
|
||||
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
||||
rec H₂ H₁
|
||||
|
||||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||||
subst H₂ H₁
|
||||
|
||||
theorem symm (H : a = b) : b = a :=
|
||||
subst H (refl a)
|
||||
|
||||
namespace ops
|
||||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||||
notation H1 ⬝ H2 := trans H1 H2
|
||||
notation H1 ▸ H2 := subst H1 H2
|
||||
end ops
|
||||
|
||||
variable {p : Prop}
|
||||
open ops
|
||||
|
||||
theorem true_elim (H : p = true) : p :=
|
||||
H⁻¹ ▸ trivial
|
||||
|
||||
theorem false_elim (H : p = false) : ¬p :=
|
||||
assume Hp, H ▸ Hp
|
||||
end eq
|
||||
|
||||
calc_subst eq.subst
|
||||
calc_refl eq.refl
|
||||
calc_trans eq.trans
|
||||
calc_symm eq.symm
|
||||
|
||||
-- ne
|
||||
-- --
|
||||
|
||||
definition ne {A : Type} (a b : A) := ¬(a = b)
|
||||
notation a ≠ b := ne a b
|
||||
|
||||
namespace ne
|
||||
open eq.ops
|
||||
variable {A : Type}
|
||||
variables {a b : A}
|
||||
|
||||
theorem intro : (a = b → false) → a ≠ b :=
|
||||
assume H, H
|
||||
|
||||
theorem elim : a ≠ b → a = b → false :=
|
||||
assume H₁ H₂, H₁ H₂
|
||||
|
||||
theorem irrefl : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem symm : a ≠ b → b ≠ a :=
|
||||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||||
end ne
|
||||
|
||||
section
|
||||
open eq.ops
|
||||
variables {A : Type} {a b c : A}
|
||||
|
||||
theorem false.of_ne : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
|
||||
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
||||
|
||||
theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
|
||||
assume H₁ H₂, H₂ ▸ H₁
|
||||
end
|
||||
|
||||
calc_trans ne.of_eq_of_ne
|
||||
calc_trans ne.of_ne_of_eq
|
||||
|
||||
infixl `==`:50 := heq
|
||||
|
||||
namespace heq
|
||||
universe variable u
|
||||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||||
|
||||
definition to_eq (H : a == a') : a = a' :=
|
||||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||||
heq.rec_on H H₁ (eq.refl A)
|
||||
|
||||
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
|
||||
eq.rec_on (to_eq H₁) H₂
|
||||
|
||||
theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ :=
|
||||
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
|
||||
|
||||
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||||
rec_on H₁ H₂
|
||||
|
||||
theorem symm (H : a == b) : b == a :=
|
||||
rec_on H (refl a)
|
||||
|
||||
definition type_eq (H : a == b) : A = B :=
|
||||
heq.rec_on H (eq.refl A)
|
||||
|
||||
theorem from_eq (H : a = a') : a == a' :=
|
||||
eq.subst H (refl a)
|
||||
|
||||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||||
subst H₂ H₁
|
||||
|
||||
theorem trans_left (H₁ : a == b) (H₂ : b = b') : a == b' :=
|
||||
trans H₁ (from_eq H₂)
|
||||
|
||||
theorem trans_right (H₁ : a = a') (H₂ : a' == b) : a == b :=
|
||||
trans (from_eq H₁) H₂
|
||||
|
||||
theorem true_elim {a : Prop} (H : a == true) : a :=
|
||||
eq.true_elim (heq.to_eq H)
|
||||
end heq
|
||||
|
||||
calc_trans heq.trans
|
||||
calc_trans heq.trans_left
|
||||
calc_trans heq.trans_right
|
||||
calc_symm heq.symm
|
||||
|
||||
theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : eq.rec_on H p == p :=
|
||||
eq.drec_on H !heq.refl
|
||||
|
||||
section
|
||||
universe variables u v
|
||||
variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B}
|
||||
theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a :=
|
||||
have aux : ∀ (f : Π x, P x) (f' : Π x, P x), f == f' → f a == f' a, from
|
||||
take f f' H, heq.to_eq H ▸ heq.refl (f a),
|
||||
(H₂ ▸ aux) f f' H₁
|
||||
|
||||
theorem hcongr {P' : A' → Type} {f : Π a, P a} {f' : Π a', P' a'} {a : A} {a' : A'}
|
||||
(Hf : f == f') (HP : P == P') (Ha : a == a') : f a == f' a' :=
|
||||
have H1 : ∀ (B P' : A → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x)
|
||||
→ f a == f' a, from
|
||||
take P P' f f' Hf HB, hcongr_fun a Hf (heq.to_eq HB),
|
||||
have H2 : ∀ (B : A → Type) (P' : A' → Type) (f : Π x, P x) (f' : Π x, P' x),
|
||||
f == f' → (λx, P x) == (λx, P' x) → f a == f' a', from heq.subst Ha H1,
|
||||
H2 P P' f f' Hf HP
|
||||
|
||||
theorem hcongr_arg (f : Πx, P x) {a b : A} (H : a = b) : f a == f b :=
|
||||
H ▸ (heq.refl (f a))
|
||||
end
|
||||
|
||||
section
|
||||
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||
variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||||
|
||||
theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' :=
|
||||
hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb
|
||||
|
||||
theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c')
|
||||
: f a b c == f a' b' c' :=
|
||||
hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc
|
||||
end
|
||||
|
||||
-- and
|
||||
-- ---
|
||||
|
||||
notation a /\ b := and a b
|
||||
notation a ∧ b := and a b
|
||||
|
||||
variables {a b c d : Prop}
|
||||
|
||||
namespace and
|
||||
theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||||
rec H₂ H₁
|
||||
|
||||
definition elim_left (H : a ∧ b) : a :=
|
||||
rec (λa b, a) H
|
||||
|
||||
definition elim_right (H : a ∧ b) : b :=
|
||||
rec (λa b, b) H
|
||||
|
||||
theorem swap (H : a ∧ b) : b ∧ a :=
|
||||
intro (elim_right H) (elim_left H)
|
||||
|
||||
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (elim_left H) Hna
|
||||
|
||||
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (elim_right H) Hnb
|
||||
|
||||
theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
||||
elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb))
|
||||
|
||||
theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
||||
elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc)
|
||||
|
||||
theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
||||
elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha))
|
||||
end and
|
||||
|
||||
-- or
|
||||
-- --
|
||||
notation a `\/` b := or a b
|
||||
notation a ∨ b := or a b
|
||||
|
||||
namespace or
|
||||
definition inl (Ha : a) : a ∨ b :=
|
||||
intro_left b Ha
|
||||
|
||||
definition inr (Hb : b) : a ∨ b :=
|
||||
intro_right a Hb
|
||||
|
||||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||||
rec H₂ H₃ H₁
|
||||
|
||||
theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
||||
elim H Ha (assume H₂, elim H₂ Hb Hc)
|
||||
|
||||
theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
||||
elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
||||
|
||||
theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
||||
elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
||||
|
||||
theorem swap (H : a ∨ b) : b ∨ a :=
|
||||
elim H (assume Ha, inr Ha) (assume Hb, inl Hb)
|
||||
|
||||
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
||||
assume H : a ∨ b, or.rec_on H
|
||||
(assume Ha, absurd Ha Hna)
|
||||
(assume Hb, absurd Hb Hnb)
|
||||
|
||||
theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
||||
elim H₁
|
||||
(assume Ha : a, inl (H₂ Ha))
|
||||
(assume Hb : b, inr (H₃ Hb))
|
||||
|
||||
theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
||||
elim H₁
|
||||
(assume H₂ : a, inl (H H₂))
|
||||
(assume H₂ : c, inr H₂)
|
||||
|
||||
theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
||||
elim H₁
|
||||
(assume H₂ : c, inl H₂)
|
||||
(assume H₂ : a, inr (H H₂))
|
||||
end or
|
||||
|
||||
theorem not_not_em {p : Prop} : ¬¬(p ∨ ¬p) :=
|
||||
assume not_em : ¬(p ∨ ¬p),
|
||||
have Hnp : ¬p, from
|
||||
assume Hp : p, absurd (or.inl Hp) not_em,
|
||||
absurd (or.inr Hnp) not_em
|
||||
|
||||
-- iff
|
||||
-- ---
|
||||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||||
|
||||
notation a <-> b := iff a b
|
||||
notation a ↔ b := iff a b
|
||||
|
||||
namespace iff
|
||||
definition def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||||
rfl
|
||||
|
||||
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||||
and.intro H₁ H₂
|
||||
|
||||
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||||
and.rec H₁ H₂
|
||||
|
||||
definition elim_left (H : a ↔ b) : a → b :=
|
||||
elim (assume H₁ H₂, H₁) H
|
||||
|
||||
definition mp := @elim_left
|
||||
|
||||
definition elim_right (H : a ↔ b) : b → a :=
|
||||
elim (assume H₁ H₂, H₂) H
|
||||
|
||||
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||||
intro
|
||||
(assume Hna, mt (elim_right H₁) Hna)
|
||||
(assume Hnb, mt (elim_left H₁) Hnb)
|
||||
|
||||
definition refl (a : Prop) : a ↔ a :=
|
||||
intro (assume H, H) (assume H, H)
|
||||
|
||||
definition rfl {a : Prop} : a ↔ a :=
|
||||
refl a
|
||||
|
||||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||
intro
|
||||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||||
|
||||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||||
intro
|
||||
(assume Hb, elim_right H Hb)
|
||||
(assume Ha, elim_left H Ha)
|
||||
|
||||
theorem true_elim (H : a ↔ true) : a :=
|
||||
mp (symm H) trivial
|
||||
|
||||
theorem false_elim (H : a ↔ false) : ¬a :=
|
||||
assume Ha : a, mp H Ha
|
||||
|
||||
open eq.ops
|
||||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||||
end iff
|
||||
|
||||
calc_refl iff.refl
|
||||
calc_trans iff.trans
|
||||
|
||||
-- comm and assoc for and / or
|
||||
-- ---------------------------
|
||||
namespace and
|
||||
theorem comm : a ∧ b ↔ b ∧ a :=
|
||||
iff.intro (λH, swap H) (λH, swap H)
|
||||
|
||||
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
||||
iff.intro
|
||||
(assume H, intro
|
||||
(elim_left (elim_left H))
|
||||
(intro (elim_right (elim_left H)) (elim_right H)))
|
||||
(assume H, intro
|
||||
(intro (elim_left H) (elim_left (elim_right H)))
|
||||
(elim_right (elim_right H)))
|
||||
end and
|
||||
|
||||
namespace or
|
||||
theorem comm : a ∨ b ↔ b ∨ a :=
|
||||
iff.intro (λH, swap H) (λH, swap H)
|
||||
|
||||
theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
||||
iff.intro
|
||||
(assume H, elim H
|
||||
(assume H₁, elim H₁
|
||||
(assume Ha, inl Ha)
|
||||
(assume Hb, inr (inl Hb)))
|
||||
(assume Hc, inr (inr Hc)))
|
||||
(assume H, elim H
|
||||
(assume Ha, (inl (inl Ha)))
|
||||
(assume H₁, elim H₁
|
||||
(assume Hb, inl (inr Hb))
|
||||
(assume Hc, inr Hc)))
|
||||
end or
|
||||
|
||||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||||
intro : ∀ (a : A), P a → Exists P
|
||||
|
||||
definition exists_intro := @Exists.intro
|
||||
|
||||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||||
|
||||
theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
|
||||
Exists.rec H2 H1
|
||||
|
||||
definition exists_unique {A : Type} (p : A → Prop) :=
|
||||
∃x, p x ∧ ∀y, p y → y = x
|
||||
|
||||
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
|
||||
|
||||
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x :=
|
||||
exists_intro w (and.intro H1 H2)
|
||||
|
||||
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
|
||||
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
|
||||
obtain w Hw, from H2,
|
||||
H1 w (and.elim_left Hw) (and.elim_right Hw)
|
||||
|
||||
inductive decidable [class] (p : Prop) : Type :=
|
||||
inl : p → decidable p,
|
||||
inr : ¬p → decidable p
|
||||
|
||||
|
||||
definition true.decidable [instance] : decidable true :=
|
||||
decidable.inl trivial
|
||||
|
||||
definition false.decidable [instance] : decidable false :=
|
||||
decidable.inr not_false
|
||||
|
||||
namespace decidable
|
||||
variables {p q : Prop}
|
||||
|
||||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||||
: rec_on H H1 H2 :=
|
||||
rec_on H (λh, H4) (λh, false.rec _ (h H3))
|
||||
|
||||
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
|
||||
: rec_on H H1 H2 :=
|
||||
rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||||
|
||||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||||
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||||
|
||||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p :=
|
||||
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
|
||||
|
||||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||||
by_cases
|
||||
(assume H1 : p, H1)
|
||||
(assume H1 : ¬p, false_elim (H H1))
|
||||
|
||||
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, inl (iff.elim_left H Hp))
|
||||
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
|
||||
|
||||
definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q :=
|
||||
decidable_iff_equiv Hp (iff.of_eq H)
|
||||
end decidable
|
||||
|
||||
section
|
||||
variables {p q : Prop}
|
||||
open decidable (rec_on inl inr)
|
||||
|
||||
definition and.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (and.intro Hp Hq))
|
||||
(assume Hnq : ¬q, inr (and.not_right p Hnq)))
|
||||
(assume Hnp : ¬p, inr (and.not_left q Hnp))
|
||||
|
||||
definition or.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∨ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, inl (or.inl Hp))
|
||||
(assume Hnp : ¬p, rec_on Hq
|
||||
(assume Hq : q, inl (or.inr Hq))
|
||||
(assume Hnq : ¬q, inr (or.not_intro Hnp Hnq)))
|
||||
|
||||
definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) :=
|
||||
rec_on Hp
|
||||
(assume Hp, inr (not_not_intro Hp))
|
||||
(assume Hnp, inl Hnp)
|
||||
|
||||
definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (assume H, Hq))
|
||||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||||
|
||||
definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _
|
||||
end
|
||||
|
||||
definition decidable_pred {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||||
definition decidable_rel {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||||
definition decidable_eq (A : Type) := decidable_rel (@eq A)
|
||||
|
||||
inductive inhabited [class] (A : Type) : Type :=
|
||||
mk : A → inhabited A
|
||||
|
||||
namespace inhabited
|
||||
|
||||
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||
inhabited.rec H2 H1
|
||||
|
||||
definition Prop_inhabited [instance] : inhabited Prop :=
|
||||
mk true
|
||||
|
||||
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
||||
destruct H (λb, mk (λa, b))
|
||||
|
||||
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
|
||||
inhabited (Πx, B x) :=
|
||||
mk (λa, destruct (H a) (λb, b))
|
||||
|
||||
definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a)
|
||||
|
||||
end inhabited
|
||||
|
||||
inductive nonempty [class] (A : Type) : Prop :=
|
||||
intro : A → nonempty A
|
||||
|
||||
namespace nonempty
|
||||
protected definition elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||||
rec H2 H1
|
||||
|
||||
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
|
||||
intro (inhabited.default A)
|
||||
end nonempty
|
||||
|
||||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||||
|
||||
notation `if` c `then` t:45 `else` e:45 := ite c t e
|
||||
|
||||
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||||
H
|
||||
|
||||
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||||
H
|
||||
|
||||
definition if_true {A : Type} (t e : A) : (if true then t else e) = t :=
|
||||
if_pos trivial
|
||||
|
||||
definition if_false {A : Type} (t e : A) : (if false then t else e) = e :=
|
||||
if_neg not_false
|
||||
|
||||
theorem if_cond_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
||||
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
||||
decidable.rec_on H₁
|
||||
(λ Hc₁ : c₁, decidable.rec_on H₂
|
||||
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
||||
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
||||
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
||||
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
||||
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
||||
|
||||
theorem if_congr_aux {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
||||
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
||||
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
||||
|
||||
theorem if_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
||||
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
|
||||
if_congr_aux Hc Ht He
|
||||
|
||||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||||
-- to the branches
|
||||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||||
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
||||
|
||||
notation `dif` c `then` t:45 `else` e:45 := dite c t e
|
||||
|
||||
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = t Hc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = e Hnc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||||
H
|
||||
|
||||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||
rfl
|
|
@ -1,14 +1,13 @@
|
|||
--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Floris van Doorn, Leonardo de Moura
|
||||
import logic.eq logic.heq logic.wf logic.decidable logic.if data.prod
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Floris van Doorn, Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.wf init.tactic
|
||||
|
||||
open eq.ops decidable
|
||||
|
||||
inductive nat :=
|
||||
zero : nat,
|
||||
succ : nat → nat
|
||||
|
||||
namespace nat
|
||||
notation `ℕ` := nat
|
||||
|
|
@ -1,9 +1,11 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.decl logic.inhabited data.bool
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.logic init.bool
|
||||
open bool
|
||||
|
||||
definition pos_num.is_inhabited [instance] : inhabited pos_num :=
|
10
library/init/priority.lean
Normal file
10
library/init/priority.lean
Normal file
|
@ -0,0 +1,10 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.datatypes
|
||||
definition std.priority.default : num := 1000
|
||||
definition std.priority.max : num := 4294967295
|
|
@ -1,10 +1,31 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.prod.decl logic.wf
|
||||
open well_founded
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.prod.decl
|
||||
Author: Leonardo de Moura, Jeremy Avigad
|
||||
-/
|
||||
prelude
|
||||
import init.wf
|
||||
|
||||
definition pair := @prod.mk
|
||||
|
||||
namespace prod
|
||||
notation A * B := prod A B
|
||||
notation A × B := prod A B
|
||||
namespace low_precedence_times
|
||||
reserve infixr `*`:30 -- conflicts with notation for multiplication
|
||||
infixr `*` := prod
|
||||
end low_precedence_times
|
||||
|
||||
notation `pr₁` := pr1
|
||||
notation `pr₂` := pr2
|
||||
|
||||
-- notation for n-ary tuples
|
||||
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||||
|
||||
open well_founded
|
||||
|
||||
section
|
||||
variables {A B : Type}
|
||||
variable (Ra : A → A → Prop)
|
|
@ -1,7 +1,10 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura
|
||||
import logic.eq
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.logic
|
||||
|
||||
-- TODO(Leo): remove duplication between this file and algebra/relation.lean
|
||||
-- We need some of the following definitions asap when "initializing" Lean.
|
|
@ -5,9 +5,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: general_notation
|
||||
Authors: Leonardo de Moura, Jeremy Avigad
|
||||
-/
|
||||
import data.num.decl
|
||||
|
||||
/- General operations -/
|
||||
prelude
|
||||
import init.datatypes
|
||||
|
||||
notation `assume` binders `,` r:(scoped f, f) := r
|
||||
notation `take` binders `,` r:(scoped f, f) := r
|
|
@ -1,10 +1,27 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import data.sigma.decl logic.wf logic.cast
|
||||
open well_founded
|
||||
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
prelude
|
||||
import init.num init.wf init.logic init.tactic
|
||||
|
||||
structure sigma {A : Type} (B : A → Type) :=
|
||||
dpair :: (dpr1 : A) (dpr2 : B dpr1)
|
||||
|
||||
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
||||
|
||||
namespace sigma
|
||||
|
||||
notation `dpr₁` := dpr1
|
||||
notation `dpr₂` := dpr2
|
||||
|
||||
namespace ops
|
||||
postfix `.1`:(max+1) := dpr1
|
||||
postfix `.2`:(max+1) := dpr2
|
||||
notation `⟨` t:(foldr `,` (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||||
end ops
|
||||
|
||||
open well_founded
|
||||
|
||||
section
|
||||
variables {A : Type} {B : A → Type}
|
||||
variable (Ra : A → A → Prop)
|
||||
|
@ -23,6 +40,19 @@ namespace sigma
|
|||
|
||||
set_option pp.beta true
|
||||
|
||||
variables {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||
variables {a a' : A}
|
||||
{b : B a} {b' : B a'}
|
||||
{c : C a b} {c' : C a' b'}
|
||||
{d : D a b c} {d' : D a' b' c'}
|
||||
|
||||
private theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' :=
|
||||
hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb
|
||||
|
||||
private theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c')
|
||||
: f a b c == f a' b' c' :=
|
||||
hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc
|
||||
|
||||
definition lex.accessible {a} (aca : acc Ra a) (acb : ∀a, well_founded (Rb a)) : ∀ (b : B a), acc (lex Ra Rb) (dpair a b) :=
|
||||
acc.rec_on aca
|
||||
(λxa aca (iHa : ∀y, Ra y xa → ∀b : B y, acc (lex Ra Rb) (dpair y b)),
|
||||
|
@ -61,5 +91,4 @@ namespace sigma
|
|||
well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) Hb b))
|
||||
|
||||
end
|
||||
|
||||
end sigma
|
|
@ -1,16 +1,19 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.string.decl data.num.decl general_notation
|
||||
-- This is just a trick to embed the 'tactic language' as a
|
||||
-- Lean expression. We should view 'tactic' as automation
|
||||
-- that when execute produces a term.
|
||||
-- tactic.builtin is just a "dummy" for creating the
|
||||
-- definitions that are actually implemented in C++
|
||||
inductive tactic : Type :=
|
||||
builtin : tactic
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
|
||||
This is just a trick to embed the 'tactic language' as a Lean
|
||||
expression. We should view 'tactic' as automation that when execute
|
||||
produces a term. tactic.builtin is just a "dummy" for creating the
|
||||
definitions that are actually implemented in C++
|
||||
-/
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
inductive tactic :
|
||||
Type := builtin : tactic
|
||||
|
||||
namespace tactic
|
||||
-- Remark the following names are not arbitrary, the tactic module
|
|
@ -1,7 +1,10 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.eq logic.relation
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Leonardo de Moura
|
||||
-/
|
||||
prelude
|
||||
import init.relation
|
||||
|
||||
inductive acc {A : Type} (R : A → A → Prop) : A → Prop :=
|
||||
intro : ∀x, (∀ y, R y x → acc R y) → acc R x
|
|
@ -1,10 +1,10 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.wf data.nat.basic
|
||||
prelude
|
||||
import init.nat
|
||||
|
||||
namespace well_founded
|
||||
|
||||
-- This is an auxiliary definition that useful for generating a new "proof" for (well_founded R)
|
||||
-- that allows us to use well_founded.fix and execute the definitions up to k nested recursive
|
||||
-- calls without "computing" with the proofs in Hwf.
|
|
@ -23,8 +23,8 @@ cases P H1 H2 a
|
|||
-- this supercedes the em in decidable
|
||||
theorem em (a : Prop) : a ∨ ¬a :=
|
||||
or.elim (prop_complete a)
|
||||
(assume Ht : a = true, or.inl (eq_true_elim Ht))
|
||||
(assume Hf : a = false, or.inr (eq_false_elim Hf))
|
||||
(assume Ht : a = true, or.inl (eq.true_elim Ht))
|
||||
(assume Hf : a = false, or.inr (eq.false_elim Hf))
|
||||
|
||||
theorem prop_complete_swapped (a : Prop) : a = false ∨ a = true :=
|
||||
cases (λ x, x = false ∨ x = true)
|
||||
|
@ -36,9 +36,9 @@ theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
|
|||
or.elim (prop_complete a)
|
||||
(assume Hat, or.elim (prop_complete b)
|
||||
(assume Hbt, Hat ⬝ Hbt⁻¹)
|
||||
(assume Hbf, false_elim (Hbf ▸ (Hab (eq_true_elim Hat)))))
|
||||
(assume Hbf, false_elim (Hbf ▸ (Hab (eq.true_elim Hat)))))
|
||||
(assume Haf, or.elim (prop_complete b)
|
||||
(assume Hbt, false_elim (Haf ▸ (Hba (eq_true_elim Hbt))))
|
||||
(assume Hbt, false_elim (Haf ▸ (Hba (eq.true_elim Hbt))))
|
||||
(assume Hbf, Haf ⬝ Hbf⁻¹))
|
||||
|
||||
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
|
||||
|
|
|
@ -7,9 +7,7 @@
|
|||
|
||||
-- Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the
|
||||
-- constructive one).
|
||||
|
||||
import logic.quantifiers
|
||||
import logic.inhabited logic.nonempty
|
||||
import data.subtype data.sum
|
||||
|
||||
open subtype inhabited nonempty
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
-- logic.axioms.prop_decidable
|
||||
-- ===========================
|
||||
|
||||
import logic.axioms.classical logic.axioms.hilbert logic.decidable
|
||||
import logic.axioms.classical logic.axioms.hilbert
|
||||
open decidable inhabited nonempty
|
||||
|
||||
-- Excluded middle + Hilbert implies every proposition is decidable
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.eq logic.heq logic.quantifiers
|
||||
import logic.eq logic.quantifiers
|
||||
open eq.ops
|
||||
|
||||
-- cast.lean
|
||||
|
@ -35,9 +35,6 @@ section
|
|||
universe variables u v
|
||||
variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B}
|
||||
|
||||
theorem eq_rec_heq (H : a = a') (p : P a) : eq.rec_on H p == p :=
|
||||
eq.drec_on H !heq.refl
|
||||
|
||||
-- should H₁ be explicit (useful in e.g. hproof_irrel)
|
||||
theorem eq_rec_to_heq {H₁ : a = a'} {p : P a} {p' : P a'} (H₂ : eq.rec_on H₁ p = p') : p == p' :=
|
||||
calc
|
||||
|
@ -61,19 +58,11 @@ section
|
|||
theorem pi_eq (H : P = P') : (Π x, P x) = (Π x, P' x) :=
|
||||
H ▸ (eq.refl (Π x, P x))
|
||||
|
||||
theorem hcongr_arg (f : Πx, P x) {a b : A} (H : a = b) : f a == f b :=
|
||||
H ▸ (heq.refl (f a))
|
||||
|
||||
theorem rec_on_app (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a == f a :=
|
||||
have aux : ∀ H : P = P, eq.rec_on H f a == f a, from
|
||||
take H : P = P, heq.refl (eq.rec_on H f a),
|
||||
(H ▸ aux) H
|
||||
|
||||
theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a :=
|
||||
have aux : ∀ (f : Π x, P x) (f' : Π x, P x), f == f' → f a == f' a, from
|
||||
take f f' H, heq.to_eq H ▸ heq.refl (f a),
|
||||
(H₂ ▸ aux) f f' H₁
|
||||
|
||||
theorem rec_on_pull (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a = eq.rec_on (congr_fun H a) (f a) :=
|
||||
heq.to_eq (calc
|
||||
eq.rec_on H f a == f a : rec_on_app H f a
|
||||
|
@ -86,14 +75,6 @@ section
|
|||
H ▸ H₁,
|
||||
H₂ (pi_eq H)
|
||||
|
||||
theorem hcongr {P' : A' → Type} {f : Π a, P a} {f' : Π a', P' a'} {a : A} {a' : A'}
|
||||
(Hf : f == f') (HP : P == P') (Ha : a == a') : f a == f' a' :=
|
||||
have H1 : ∀ (B P' : A → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x)
|
||||
→ f a == f' a, from
|
||||
take P P' f f' Hf HB, hcongr_fun a Hf (heq.to_eq HB),
|
||||
have H2 : ∀ (B : A → Type) (P' : A' → Type) (f : Π x, P x) (f' : Π x, P' x),
|
||||
f == f' → (λx, P x) == (λx, P' x) → f a == f' a', from heq.subst Ha H1,
|
||||
H2 P P' f f' Hf HP
|
||||
end
|
||||
|
||||
section
|
||||
|
@ -104,13 +85,6 @@ section
|
|||
{c : C a b} {c' : C a' b'}
|
||||
{d : D a b c} {d' : D a' b' c'}
|
||||
|
||||
theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' :=
|
||||
hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb
|
||||
|
||||
theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c')
|
||||
: f a b c == f a' b' c' :=
|
||||
hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc
|
||||
|
||||
theorem hcongr_arg4 (f : Πa b c d, E a b c d)
|
||||
(Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : d == d') : f a b c d == f a' b' c' d' :=
|
||||
hcongr (hcongr_arg3 f Ha Hb Hc) (hcongr_arg3 E Ha Hb Hc) Hd
|
||||
|
|
|
@ -1,196 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import general_notation .eq
|
||||
|
||||
-- and
|
||||
-- ---
|
||||
inductive and (a b : Prop) : Prop :=
|
||||
intro : a → b → and a b
|
||||
|
||||
notation a /\ b := and a b
|
||||
notation a ∧ b := and a b
|
||||
|
||||
variables {a b c d : Prop}
|
||||
|
||||
namespace and
|
||||
theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||||
rec H₂ H₁
|
||||
|
||||
definition elim_left (H : a ∧ b) : a :=
|
||||
rec (λa b, a) H
|
||||
|
||||
definition elim_right (H : a ∧ b) : b :=
|
||||
rec (λa b, b) H
|
||||
|
||||
theorem swap (H : a ∧ b) : b ∧ a :=
|
||||
intro (elim_right H) (elim_left H)
|
||||
|
||||
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (elim_left H) Hna
|
||||
|
||||
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (elim_right H) Hnb
|
||||
|
||||
theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
||||
elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb))
|
||||
|
||||
theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
||||
elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc)
|
||||
|
||||
theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
||||
elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha))
|
||||
end and
|
||||
|
||||
-- or
|
||||
-- --
|
||||
inductive or (a b : Prop) : Prop :=
|
||||
intro_left : a → or a b,
|
||||
intro_right : b → or a b
|
||||
|
||||
notation a `\/` b := or a b
|
||||
notation a ∨ b := or a b
|
||||
|
||||
namespace or
|
||||
definition inl (Ha : a) : a ∨ b :=
|
||||
intro_left b Ha
|
||||
|
||||
definition inr (Hb : b) : a ∨ b :=
|
||||
intro_right a Hb
|
||||
|
||||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||||
rec H₂ H₃ H₁
|
||||
|
||||
theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
||||
elim H Ha (assume H₂, elim H₂ Hb Hc)
|
||||
|
||||
theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
||||
elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
||||
|
||||
theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
||||
elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
||||
|
||||
theorem swap (H : a ∨ b) : b ∨ a :=
|
||||
elim H (assume Ha, inr Ha) (assume Hb, inl Hb)
|
||||
|
||||
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
||||
assume H : a ∨ b, or.rec_on H
|
||||
(assume Ha, absurd Ha Hna)
|
||||
(assume Hb, absurd Hb Hnb)
|
||||
|
||||
theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
||||
elim H₁
|
||||
(assume Ha : a, inl (H₂ Ha))
|
||||
(assume Hb : b, inr (H₃ Hb))
|
||||
|
||||
theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
||||
elim H₁
|
||||
(assume H₂ : a, inl (H H₂))
|
||||
(assume H₂ : c, inr H₂)
|
||||
|
||||
theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
||||
elim H₁
|
||||
(assume H₂ : c, inl H₂)
|
||||
(assume H₂ : a, inr (H H₂))
|
||||
end or
|
||||
|
||||
theorem not_not_em {p : Prop} : ¬¬(p ∨ ¬p) :=
|
||||
assume not_em : ¬(p ∨ ¬p),
|
||||
have Hnp : ¬p, from
|
||||
assume Hp : p, absurd (or.inl Hp) not_em,
|
||||
absurd (or.inr Hnp) not_em
|
||||
|
||||
-- iff
|
||||
-- ---
|
||||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||||
|
||||
notation a <-> b := iff a b
|
||||
notation a ↔ b := iff a b
|
||||
|
||||
namespace iff
|
||||
definition def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||||
rfl
|
||||
|
||||
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||||
and.intro H₁ H₂
|
||||
|
||||
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||||
and.rec H₁ H₂
|
||||
|
||||
definition elim_left (H : a ↔ b) : a → b :=
|
||||
elim (assume H₁ H₂, H₁) H
|
||||
|
||||
definition mp := @elim_left
|
||||
|
||||
definition elim_right (H : a ↔ b) : b → a :=
|
||||
elim (assume H₁ H₂, H₂) H
|
||||
|
||||
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||||
intro
|
||||
(assume Hna, mt (elim_right H₁) Hna)
|
||||
(assume Hnb, mt (elim_left H₁) Hnb)
|
||||
|
||||
definition refl (a : Prop) : a ↔ a :=
|
||||
intro (assume H, H) (assume H, H)
|
||||
|
||||
definition rfl {a : Prop} : a ↔ a :=
|
||||
refl a
|
||||
|
||||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||
intro
|
||||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||||
|
||||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||||
intro
|
||||
(assume Hb, elim_right H Hb)
|
||||
(assume Ha, elim_left H Ha)
|
||||
|
||||
theorem true_elim (H : a ↔ true) : a :=
|
||||
mp (symm H) trivial
|
||||
|
||||
theorem false_elim (H : a ↔ false) : ¬a :=
|
||||
assume Ha : a, mp H Ha
|
||||
|
||||
open eq.ops
|
||||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||||
end iff
|
||||
|
||||
calc_refl iff.refl
|
||||
calc_trans iff.trans
|
||||
|
||||
-- comm and assoc for and / or
|
||||
-- ---------------------------
|
||||
namespace and
|
||||
theorem comm : a ∧ b ↔ b ∧ a :=
|
||||
iff.intro (λH, swap H) (λH, swap H)
|
||||
|
||||
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
||||
iff.intro
|
||||
(assume H, intro
|
||||
(elim_left (elim_left H))
|
||||
(intro (elim_right (elim_left H)) (elim_right H)))
|
||||
(assume H, intro
|
||||
(intro (elim_left H) (elim_left (elim_right H)))
|
||||
(elim_right (elim_right H)))
|
||||
end and
|
||||
|
||||
namespace or
|
||||
theorem comm : a ∨ b ↔ b ∨ a :=
|
||||
iff.intro (λH, swap H) (λH, swap H)
|
||||
|
||||
theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
||||
iff.intro
|
||||
(assume H, elim H
|
||||
(assume H₁, elim H₁
|
||||
(assume Ha, inl Ha)
|
||||
(assume Hb, inr (inl Hb)))
|
||||
(assume Hc, inr (inr Hc)))
|
||||
(assume H, elim H
|
||||
(assume Ha, (inl (inl Ha)))
|
||||
(assume H₁, elim H₁
|
||||
(assume Hb, inl (inr Hb))
|
||||
(assume Hc, inr Hc)))
|
||||
end or
|
|
@ -1,100 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
|
||||
import logic.connectives data.empty
|
||||
|
||||
inductive decidable [class] (p : Prop) : Type :=
|
||||
inl : p → decidable p,
|
||||
inr : ¬p → decidable p
|
||||
|
||||
namespace decidable
|
||||
definition true_decidable [instance] : decidable true :=
|
||||
inl trivial
|
||||
|
||||
definition false_decidable [instance] : decidable false :=
|
||||
inr not_false_trivial
|
||||
|
||||
variables {p q : Prop}
|
||||
|
||||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||||
: rec_on H H1 H2 :=
|
||||
rec_on H (λh, H4) (λh, false.rec _ (h H3))
|
||||
|
||||
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
|
||||
: rec_on H H1 H2 :=
|
||||
rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||||
|
||||
theorem irrelevant [instance] : subsingleton (decidable p) :=
|
||||
subsingleton.intro (fun d1 d2,
|
||||
decidable.rec
|
||||
(assume Hp1 : p, decidable.rec
|
||||
(assume Hp2 : p, congr_arg inl (eq.refl Hp1)) -- using proof irrelevance for Prop
|
||||
(assume Hnp2 : ¬p, absurd Hp1 Hnp2)
|
||||
d2)
|
||||
(assume Hnp1 : ¬p, decidable.rec
|
||||
(assume Hp2 : p, absurd Hp2 Hnp1)
|
||||
(assume Hnp2 : ¬p, congr_arg inr (eq.refl Hnp1)) -- using proof irrelevance for Prop
|
||||
d2)
|
||||
d1)
|
||||
|
||||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||||
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||||
|
||||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p :=
|
||||
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
|
||||
|
||||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||||
by_cases
|
||||
(assume H1 : p, H1)
|
||||
(assume H1 : ¬p, false_elim (H H1))
|
||||
|
||||
definition and_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (and.intro Hp Hq))
|
||||
(assume Hnq : ¬q, inr (and.not_right p Hnq)))
|
||||
(assume Hnp : ¬p, inr (and.not_left q Hnp))
|
||||
|
||||
definition or_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∨ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, inl (or.inl Hp))
|
||||
(assume Hnp : ¬p, rec_on Hq
|
||||
(assume Hq : q, inl (or.inr Hq))
|
||||
(assume Hnq : ¬q, inr (or.not_intro Hnp Hnq)))
|
||||
|
||||
definition not_decidable [instance] (Hp : decidable p) : decidable (¬p) :=
|
||||
rec_on Hp
|
||||
(assume Hp, inr (not_not_intro Hp))
|
||||
(assume Hnp, inl Hnp)
|
||||
|
||||
definition implies_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (assume H, Hq))
|
||||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||||
|
||||
definition iff_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _
|
||||
|
||||
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, inl (iff.elim_left H Hp))
|
||||
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
|
||||
|
||||
definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q :=
|
||||
decidable_iff_equiv Hp (iff.of_eq H)
|
||||
|
||||
protected theorem rec_subsingleton [instance] [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type}
|
||||
(H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h))
|
||||
: subsingleton (rec_on H H1 H2) :=
|
||||
rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
||||
end decidable
|
||||
|
||||
definition decidable_pred {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||||
definition decidable_rel {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||||
definition decidable_eq (A : Type) := decidable_rel (@eq A)
|
||||
|
||||
--empty cannot depend on decidable, so we prove this here
|
||||
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
|
||||
take (a b : empty), decidable.inl (!empty.elim a)
|
|
@ -2,11 +2,5 @@
|
|||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad
|
||||
|
||||
import logic.connectives logic.eq logic.heq
|
||||
import logic.cast logic.wf logic.wf_k
|
||||
-- We need unit and prod available for generating constructions used by definitional package
|
||||
import data.unit.decl data.prod.decl
|
||||
import logic.quantifiers logic.if
|
||||
import logic.decidable logic.inhabited logic.nonempty
|
||||
import logic.instances
|
||||
import logic.identities
|
||||
import logic.eq logic.cast logic.subsingleton
|
||||
import logic.quantifiers logic.instances logic.identities
|
||||
|
|
|
@ -1,88 +1,20 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
import general_notation logic.prop data.unit.decl
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
|
||||
Additional declarations/theorems about equality
|
||||
-/
|
||||
|
||||
-- logic.eq
|
||||
-- ====================
|
||||
-- ========
|
||||
|
||||
-- Equality.
|
||||
|
||||
-- eq
|
||||
-- --
|
||||
|
||||
inductive eq {A : Type} (a : A) : A → Prop :=
|
||||
refl : eq a a
|
||||
|
||||
notation a = b := eq a b
|
||||
definition rfl {A : Type} {a : A} := eq.refl a
|
||||
|
||||
-- proof irrelevance is built in
|
||||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||||
rfl
|
||||
|
||||
namespace eq
|
||||
variables {A : Type}
|
||||
variables {a b c : A}
|
||||
theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) :=
|
||||
rfl
|
||||
|
||||
theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ :=
|
||||
!proof_irrel
|
||||
|
||||
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
||||
rec H₂ H₁
|
||||
|
||||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||||
subst H₂ H₁
|
||||
|
||||
theorem symm (H : a = b) : b = a :=
|
||||
subst H (refl a)
|
||||
|
||||
namespace ops
|
||||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||||
notation H1 ⬝ H2 := trans H1 H2
|
||||
notation H1 ▸ H2 := subst H1 H2
|
||||
end ops
|
||||
end eq
|
||||
|
||||
calc_subst eq.subst
|
||||
calc_refl eq.refl
|
||||
calc_trans eq.trans
|
||||
calc_symm eq.symm
|
||||
|
||||
open eq.ops
|
||||
|
||||
namespace eq
|
||||
variables {A B : Type} {a a' a₁ a₂ a₃ a₄ : A}
|
||||
definition drec_on {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
|
||||
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
||||
|
||||
--can we remove the theorems about drec_on and only have the rec_on versions?
|
||||
-- theorem drec_on_id {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : drec_on H b = b :=
|
||||
-- rfl
|
||||
|
||||
-- theorem drec_on_constant (H : a = a') {B : Type} (b : B) : drec_on H b = b :=
|
||||
-- drec_on H rfl
|
||||
|
||||
-- theorem drec_on_constant2 (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : drec_on H₁ b = drec_on H₂ b :=
|
||||
-- drec_on_constant H₁ b ⬝ (drec_on_constant H₂ b)⁻¹
|
||||
|
||||
|
||||
-- theorem drec_on_irrel_arg {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a')
|
||||
-- (b : D (f a)) : drec_on H b = drec_on H' b :=
|
||||
-- drec_on H (λ(H' : f a = f a), !drec_on_id⁻¹) H'
|
||||
|
||||
-- theorem drec_on_irrel {D : A → Type} (H H' : a = a') (b : D a) :
|
||||
-- drec_on H b = drec_on H' b :=
|
||||
-- !drec_on_irrel_arg
|
||||
|
||||
-- theorem drec_on_compose {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
||||
-- (u : P a) : drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u :=
|
||||
-- (show ∀ H₂ : b = c, drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u,
|
||||
-- from drec_on H₂ (take (H₂ : b = b), drec_on_id H₂ _))
|
||||
-- H₂
|
||||
|
||||
theorem rec_on_id {B : A → Type} (H : a = a) (b : B a) : rec_on H b = b :=
|
||||
rfl
|
||||
|
||||
|
@ -96,20 +28,10 @@ namespace eq
|
|||
rec_on H b = rec_on H' b :=
|
||||
drec_on H (λ(H' : f a = f a), !rec_on_id⁻¹) H'
|
||||
|
||||
theorem rec_on_irrel {a a' : A} {D : A → Type} (H H' : a = a') (b : D a) :
|
||||
theorem rec_on_irrel {a a' : A} {D : A → Type} (H H' : a = a') (b : D a) :
|
||||
drec_on H b = drec_on H' b :=
|
||||
!rec_on_irrel_arg
|
||||
|
||||
--do we need the following?
|
||||
-- theorem rec_on_irrel_fun {B : A → Type} {a : A} {f f' : Π x, B x} {D : Π a, B a → Type} (H : f = f') (H' : f a = f' a) (b : D a (f a)) :
|
||||
-- rec_on H b = rec_on H' b :=
|
||||
-- sorry
|
||||
|
||||
-- the
|
||||
-- theorem rec_on_comm_ap {B : A → Type} {C : Πa, B a → Type} {a a' : A} {f : Π x, C a x}
|
||||
-- (H : a = a') (H' : a = a') (b : B a) : rec_on H f b = rec_on H' (f b) :=
|
||||
-- sorry
|
||||
|
||||
theorem rec_on_compose {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
||||
(u : P a) : rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u :=
|
||||
(show ∀ H₂ : b = c, rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u,
|
||||
|
@ -135,7 +57,7 @@ section
|
|||
theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
||||
congr (congr_arg f Ha) Hb
|
||||
|
||||
theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
: f a b c = f a' b' c' :=
|
||||
congr (congr_arg2 f Ha Hb) Hc
|
||||
|
||||
|
@ -143,24 +65,24 @@ section
|
|||
: f a b c d = f a' b' c' d' :=
|
||||
congr (congr_arg3 f Ha Hb Hc) Hd
|
||||
|
||||
theorem congr_arg5 (f : A → B → C → D → E → F)
|
||||
(Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
||||
theorem congr_arg5 (f : A → B → C → D → E → F)
|
||||
(Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
||||
: f a b c d e = f a' b' c' d' e' :=
|
||||
congr (congr_arg4 f Ha Hb Hc Hd) He
|
||||
|
||||
theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' :=
|
||||
Hf ▸ congr_arg2 f Ha Hb
|
||||
|
||||
theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
: f a b c = f' a' b' c' :=
|
||||
Hf ▸ congr_arg3 f Ha Hb Hc
|
||||
|
||||
theorem congr4 (f f' : A → B → C → D → E)
|
||||
theorem congr4 (f f' : A → B → C → D → E)
|
||||
(Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
||||
: f a b c d = f' a' b' c' d' :=
|
||||
Hf ▸ congr_arg4 f Ha Hb Hc Hd
|
||||
|
||||
theorem congr5 (f f' : A → B → C → D → E → F)
|
||||
theorem congr5 (f f' : A → B → C → D → E → F)
|
||||
(Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
||||
: f a b c d e = f' a' b' c' d' e' :=
|
||||
Hf ▸ congr_arg5 f Ha Hb Hc Hd He
|
||||
|
@ -178,12 +100,6 @@ section
|
|||
theorem eqmpr (H₁ : a = b) (H₂ : b) : a :=
|
||||
H₁⁻¹ ▸ H₂
|
||||
|
||||
theorem eq_true_elim (H : a = true) : a :=
|
||||
H⁻¹ ▸ trivial
|
||||
|
||||
theorem eq_false_elim (H : a = false) : ¬a :=
|
||||
assume Ha : a, H ▸ Ha
|
||||
|
||||
theorem imp_trans (H₁ : a → b) (H₂ : b → c) : a → c :=
|
||||
assume Ha, H₂ (H₁ Ha)
|
||||
|
||||
|
@ -194,45 +110,6 @@ section
|
|||
assume Ha, H₂ (H₁ ▸ Ha)
|
||||
end
|
||||
|
||||
-- ne
|
||||
-- --
|
||||
|
||||
definition ne {A : Type} (a b : A) := ¬(a = b)
|
||||
notation a ≠ b := ne a b
|
||||
|
||||
namespace ne
|
||||
variable {A : Type}
|
||||
variables {a b : A}
|
||||
|
||||
theorem intro : (a = b → false) → a ≠ b :=
|
||||
assume H, H
|
||||
|
||||
theorem elim : a ≠ b → a = b → false :=
|
||||
assume H₁ H₂, H₁ H₂
|
||||
|
||||
theorem irrefl : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem symm : a ≠ b → b ≠ a :=
|
||||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||||
end ne
|
||||
|
||||
section
|
||||
variables {A : Type} {a b c : A}
|
||||
|
||||
theorem a_neq_a_elim : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
|
||||
theorem eq_ne_trans : a = b → b ≠ c → a ≠ c :=
|
||||
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
||||
|
||||
theorem ne_eq_trans : a ≠ b → b = c → a ≠ c :=
|
||||
assume H₁ H₂, H₂ ▸ H₁
|
||||
end
|
||||
|
||||
calc_trans eq_ne_trans
|
||||
calc_trans ne_eq_trans
|
||||
|
||||
section
|
||||
variables {p : Prop}
|
||||
|
||||
|
@ -246,13 +123,3 @@ end
|
|||
theorem true_ne_false : ¬true = false :=
|
||||
assume H : true = false,
|
||||
H ▸ trivial
|
||||
|
||||
inductive subsingleton [class] (A : Type) : Prop :=
|
||||
intro : (∀ a b : A, a = b) -> subsingleton A
|
||||
|
||||
namespace subsingleton
|
||||
definition elim {A : Type} {H : subsingleton A} : ∀(a b : A), a = b := rec (fun p, p) H
|
||||
end subsingleton
|
||||
|
||||
protected definition prop.subsingleton [instance] (P : Prop) : subsingleton P :=
|
||||
subsingleton.intro (λa b, !proof_irrel)
|
||||
|
|
|
@ -1,54 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.eq
|
||||
|
||||
inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
|
||||
refl : heq a a
|
||||
infixl `==`:50 := heq
|
||||
|
||||
namespace heq
|
||||
universe variable u
|
||||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||||
|
||||
definition to_eq (H : a == a') : a = a' :=
|
||||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||||
heq.rec_on H H₁ (eq.refl A)
|
||||
|
||||
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
|
||||
eq.rec_on (to_eq H₁) H₂
|
||||
|
||||
theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ :=
|
||||
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
|
||||
|
||||
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||||
rec_on H₁ H₂
|
||||
|
||||
theorem symm (H : a == b) : b == a :=
|
||||
rec_on H (refl a)
|
||||
|
||||
definition type_eq (H : a == b) : A = B :=
|
||||
heq.rec_on H (eq.refl A)
|
||||
|
||||
theorem from_eq (H : a = a') : a == a' :=
|
||||
eq.subst H (refl a)
|
||||
|
||||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||||
subst H₂ H₁
|
||||
|
||||
theorem trans_left (H₁ : a == b) (H₂ : b = b') : a == b' :=
|
||||
trans H₁ (from_eq H₂)
|
||||
|
||||
theorem trans_right (H₁ : a = a') (H₂ : a' == b) : a == b :=
|
||||
trans (from_eq H₁) H₂
|
||||
|
||||
theorem true_elim {a : Prop} (H : a == true) : a :=
|
||||
eq_true_elim (heq.to_eq H)
|
||||
|
||||
end heq
|
||||
|
||||
calc_trans heq.trans
|
||||
calc_trans heq.trans_left
|
||||
calc_trans heq.trans_right
|
||||
calc_symm heq.symm
|
|
@ -8,7 +8,7 @@
|
|||
-- Useful logical identities. In the absence of propositional extensionality, some of the
|
||||
-- calculations use the type class support provided by logic.instances
|
||||
|
||||
import logic.instances logic.decidable logic.quantifiers logic.cast
|
||||
import logic.instances logic.quantifiers logic.cast
|
||||
|
||||
open relation decidable relation.iff_ops
|
||||
|
||||
|
@ -46,10 +46,10 @@ iff.intro
|
|||
theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a :=
|
||||
iff.mp not_not_iff H
|
||||
|
||||
theorem not_true : (¬true) ↔ false :=
|
||||
theorem not_true_iff_false : (¬true) ↔ false :=
|
||||
iff.intro (assume H, H trivial) false_elim
|
||||
|
||||
theorem not_false : (¬false) ↔ true :=
|
||||
theorem not_false_iff_true : (¬false) ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H', H')
|
||||
|
||||
theorem not_or {a b : Prop} [Da : decidable a] [Db : decidable b] : (¬(a ∨ b)) ↔ (¬a ∧ ¬b) :=
|
||||
|
@ -104,7 +104,7 @@ theorem not_forall_exists {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)
|
|||
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) :
|
||||
∃x, ¬P x :=
|
||||
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
|
||||
have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not_decidable (D x)) H1,
|
||||
have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not.decidable (D x)) H1,
|
||||
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
|
||||
absurd H3 H)
|
||||
|
||||
|
@ -120,7 +120,7 @@ iff.intro
|
|||
|
||||
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) ↔ false :=
|
||||
iff.intro
|
||||
(assume H, a_neq_a_elim H)
|
||||
(assume H, false.of_ne H)
|
||||
(assume H, false_elim H)
|
||||
|
||||
theorem eq_id {A : Type} (a : A) : (a = a) ↔ true :=
|
||||
|
@ -137,10 +137,10 @@ iff.intro
|
|||
(assume H, false_elim H)
|
||||
|
||||
theorem true_eq_false : (true ↔ false) ↔ false :=
|
||||
not_true ▸ (a_iff_not_a true)
|
||||
not_true_iff_false ▸ (a_iff_not_a true)
|
||||
|
||||
theorem false_eq_true : (false ↔ true) ↔ false :=
|
||||
not_false ▸ (a_iff_not_a false)
|
||||
not_false_iff_true ▸ (a_iff_not_a false)
|
||||
|
||||
theorem a_eq_true (a : Prop) : (a ↔ true) ↔ a :=
|
||||
iff.intro (assume H, iff.true_elim H) (assume H, iff_true_intro H)
|
||||
|
|
|
@ -1,80 +0,0 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.decidable tools.tactic
|
||||
open decidable tactic eq.ops
|
||||
|
||||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||||
|
||||
notation `if` c `then` t:45 `else` e:45 := ite c t e
|
||||
|
||||
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (inr Hnc) A t e))
|
||||
H
|
||||
|
||||
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (inl Hc) A t t))
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (inr Hnc) A t t))
|
||||
H
|
||||
|
||||
definition if_true {A : Type} (t e : A) : (if true then t else e) = t :=
|
||||
if_pos trivial
|
||||
|
||||
definition if_false {A : Type} (t e : A) : (if false then t else e) = e :=
|
||||
if_neg not_false_trivial
|
||||
|
||||
theorem if_cond_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
||||
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
||||
decidable.rec_on H₁
|
||||
(λ Hc₁ : c₁, decidable.rec_on H₂
|
||||
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
||||
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
||||
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
||||
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
||||
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
||||
|
||||
theorem if_congr_aux {c₁ c₂ : Prop} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
||||
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
||||
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
||||
|
||||
theorem if_congr {c₁ c₂ : Prop} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
||||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
||||
have H2 [visible] : decidable c₂, from (decidable_iff_equiv H₁ Hc),
|
||||
if_congr_aux Hc Ht He
|
||||
|
||||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||||
-- to the branches
|
||||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||||
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
||||
|
||||
notation `dif` c `then` t:45 `else` e:45 := dite c t e
|
||||
|
||||
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = t Hc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@dite c (inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (dif c then t else e) = e Hnc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@dite c (inr Hnc) A t e))
|
||||
H
|
||||
|
||||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||
rfl
|
|
@ -1,27 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import logic.connectives
|
||||
|
||||
inductive inhabited [class] (A : Type) : Type :=
|
||||
mk : A → inhabited A
|
||||
|
||||
namespace inhabited
|
||||
|
||||
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||
inhabited.rec H2 H1
|
||||
|
||||
definition Prop_inhabited [instance] : inhabited Prop :=
|
||||
mk true
|
||||
|
||||
definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
||||
destruct H (λb, mk (λa, b))
|
||||
|
||||
definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) :
|
||||
inhabited (Πx, B x) :=
|
||||
mk (λa, destruct (H a) (λb, b))
|
||||
|
||||
definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a)
|
||||
|
||||
end inhabited
|
|
@ -8,7 +8,7 @@ Author: Jeremy Avigad
|
|||
Class instances for iff and eq.
|
||||
-/
|
||||
|
||||
import logic.connectives algebra.relation
|
||||
import algebra.relation
|
||||
|
||||
namespace relation
|
||||
|
||||
|
|
|
@ -1,16 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
import .inhabited
|
||||
open inhabited
|
||||
|
||||
inductive nonempty [class] (A : Type) : Prop :=
|
||||
intro : A → nonempty A
|
||||
|
||||
namespace nonempty
|
||||
protected definition elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||||
rec H2 H1
|
||||
|
||||
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
|
||||
intro (default A)
|
||||
end nonempty
|
|
@ -1,56 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import general_notation type
|
||||
|
||||
-- implication
|
||||
-- -----------
|
||||
|
||||
definition imp (a b : Prop) : Prop := a → b
|
||||
|
||||
|
||||
-- true and false
|
||||
-- --------------
|
||||
|
||||
inductive false : Prop
|
||||
|
||||
-- make c explicit and rename to false.elim
|
||||
theorem false_elim {c : Prop} (H : false) : c :=
|
||||
false.rec c H
|
||||
|
||||
inductive true : Prop :=
|
||||
intro : true
|
||||
|
||||
definition trivial := true.intro
|
||||
|
||||
definition not (a : Prop) := a → false
|
||||
prefix `¬` := not
|
||||
|
||||
|
||||
-- not
|
||||
-- ---
|
||||
|
||||
--rename to not.intro or neg.intro
|
||||
theorem not_intro {a : Prop} (H : a → false) : ¬a := H
|
||||
|
||||
--rename to not.elim or neg.elim
|
||||
theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2
|
||||
|
||||
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
|
||||
false.rec b (H2 H1)
|
||||
|
||||
theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd Ha Hna
|
||||
|
||||
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
||||
assume Ha : a, absurd (H1 Ha) H2
|
||||
|
||||
theorem not_false_trivial : ¬false :=
|
||||
assume H : false, H
|
||||
|
||||
theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
||||
|
||||
theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b :=
|
||||
assume Hb : b, absurd (assume Ha : a, Hb) H
|
|
@ -1,22 +1,8 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
import logic.connectives logic.nonempty
|
||||
|
||||
open inhabited nonempty
|
||||
|
||||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||||
intro : ∀ (a : A), P a → Exists P
|
||||
|
||||
definition exists_intro := @Exists.intro
|
||||
|
||||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||||
|
||||
theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
|
||||
Exists.rec H2 H1
|
||||
|
||||
theorem exists_not_forall {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x :=
|
||||
assume H1 : ∀x, ¬p x,
|
||||
obtain (w : A) (Hw : p w), from H,
|
||||
|
@ -27,19 +13,6 @@ assume H1 : ∃x, ¬p x,
|
|||
obtain (w : A) (Hw : ¬p w), from H1,
|
||||
absurd (H2 w) Hw
|
||||
|
||||
definition exists_unique {A : Type} (p : A → Prop) :=
|
||||
∃x, p x ∧ ∀y, p y → y = x
|
||||
|
||||
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
|
||||
|
||||
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x :=
|
||||
exists_intro w (and.intro H1 H2)
|
||||
|
||||
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
|
||||
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
|
||||
obtain w Hw, from H2,
|
||||
H1 w (and.elim_left Hw) (and.elim_right Hw)
|
||||
|
||||
theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) :=
|
||||
iff.intro
|
||||
(assume Hl, take x, iff.elim_left (H x) (Hl x))
|
||||
|
|
34
library/logic/subsingleton.lean
Normal file
34
library/logic/subsingleton.lean
Normal file
|
@ -0,0 +1,34 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Floris van Doorn
|
||||
-/
|
||||
import logic.eq
|
||||
|
||||
inductive subsingleton [class] (A : Type) : Prop :=
|
||||
intro : (∀ a b : A, a = b) → subsingleton A
|
||||
|
||||
namespace subsingleton
|
||||
definition elim {A : Type} {H : subsingleton A} : ∀(a b : A), a = b := rec (fun p, p) H
|
||||
end subsingleton
|
||||
|
||||
protected definition prop.subsingleton [instance] (P : Prop) : subsingleton P :=
|
||||
subsingleton.intro (λa b, !proof_irrel)
|
||||
|
||||
theorem irrelevant [instance] (p : Prop) : subsingleton (decidable p) :=
|
||||
subsingleton.intro (fun d1 d2,
|
||||
decidable.rec
|
||||
(assume Hp1 : p, decidable.rec
|
||||
(assume Hp2 : p, congr_arg decidable.inl (eq.refl Hp1)) -- using proof irrelevance for Prop
|
||||
(assume Hnp2 : ¬p, absurd Hp1 Hnp2)
|
||||
d2)
|
||||
(assume Hnp1 : ¬p, decidable.rec
|
||||
(assume Hp2 : p, absurd Hp2 Hnp1)
|
||||
(assume Hnp2 : ¬p, congr_arg decidable.inr (eq.refl Hnp1)) -- using proof irrelevance for Prop
|
||||
d2)
|
||||
d1)
|
||||
|
||||
protected theorem rec_subsingleton [instance] {p : Prop} [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type}
|
||||
(H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h))
|
||||
: subsingleton (decidable.rec_on H H1 H2) :=
|
||||
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
|
@ -1,4 +0,0 @@
|
|||
import data.num.decl
|
||||
|
||||
definition std.priority.default : num := 1000
|
||||
definition std.priority.max : num := 4294967295
|
|
@ -7,4 +7,4 @@
|
|||
|
||||
-- The constructive core of Lean's library.
|
||||
|
||||
import type logic data tools.tactic
|
||||
import logic data
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import .tactic
|
||||
open tactic
|
||||
|
||||
namespace fake_simplifier
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
-- Useful tactics.
|
||||
|
||||
import tools.tactic logic.eq
|
||||
import logic.eq
|
||||
|
||||
open tactic
|
||||
|
||||
|
|
|
@ -1,10 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura
|
||||
|
||||
notation `Prop` := Type.{0}
|
||||
notation [parsing-only] `Type'` := Type.{_+1}
|
||||
notation [parsing-only] `Type₊` := Type.{_+1}
|
||||
notation `Type₁` := Type.{1}
|
||||
notation `Type₂` := Type.{2}
|
||||
notation `Type₃` := Type.{3}
|
Loading…
Reference in a new issue