feat(builtin): define list, cons, nil and prove basic theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
bfe64a7031
commit
69bccb6014
1 changed files with 195 additions and 0 deletions
195
src/builtin/list.lean
Normal file
195
src/builtin/list.lean
Normal file
|
@ -0,0 +1,195 @@
|
||||||
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
-- Author: Leonardo de Moura
|
||||||
|
import num subtype optional macros tactic
|
||||||
|
using num
|
||||||
|
using subtype
|
||||||
|
|
||||||
|
namespace list
|
||||||
|
definition none {A : (Type U)} : optional A
|
||||||
|
:= optional::@none A
|
||||||
|
|
||||||
|
definition some {A : (Type U)} (a : A) : optional A
|
||||||
|
:= optional::some a
|
||||||
|
|
||||||
|
definition list_rep (A : (Type U))
|
||||||
|
:= (num → optional A) # num
|
||||||
|
|
||||||
|
definition list_pred (A : (Type U))
|
||||||
|
:= λ p : list_rep A, ∀ i, i < (proj2 p) ↔ (proj1 p) i ≠ (@none A)
|
||||||
|
|
||||||
|
definition list (A : (Type U))
|
||||||
|
:= subtype (list_rep A) (list_pred A)
|
||||||
|
|
||||||
|
definition len {A : (Type U)} (l : list A) : num
|
||||||
|
:= proj2 (rep l)
|
||||||
|
|
||||||
|
definition fn {A : (Type U)} (l : list A) : num → optional A
|
||||||
|
:= proj1 (rep l)
|
||||||
|
|
||||||
|
theorem ext {A : (Type U)} {l1 l2 : list A} (H1 : len l1 = len l2) (H2 : fn l1 = fn l2) : l1 = l2
|
||||||
|
:= have Heq : rep l1 = rep l2,
|
||||||
|
from pairext _ _ H2 (to_heq H1),
|
||||||
|
rep_inj Heq
|
||||||
|
|
||||||
|
definition nil_rep (A : (Type U)) : list_rep A
|
||||||
|
:= (pair (λ n : num, @none A) zero : list_rep A)
|
||||||
|
|
||||||
|
theorem nil_pred (A : (Type U)) : list_pred A (nil_rep A)
|
||||||
|
:= take i : num,
|
||||||
|
let nil := nil_rep A
|
||||||
|
in iff_intro
|
||||||
|
(assume Hl : i < (proj2 nil),
|
||||||
|
have H1 : i < zero,
|
||||||
|
from Hl,
|
||||||
|
absurd_elim ((proj1 nil) i ≠ (@none A)) H1 (not_lt_zero i))
|
||||||
|
(assume Hr : (proj1 nil) i ≠ (@none A),
|
||||||
|
have H1 : (@none A) ≠ (@none A),
|
||||||
|
from Hr,
|
||||||
|
false_elim (i < (proj2 nil)) (a_neq_a_elim H1))
|
||||||
|
|
||||||
|
theorem inhab (A : (Type U)) : inhabited (list A)
|
||||||
|
:= subtype_inhabited (exists_intro (nil_rep A) (nil_pred A))
|
||||||
|
|
||||||
|
definition nil {A : (Type U)} : list A
|
||||||
|
:= abst (nil_rep A) (list::inhab A)
|
||||||
|
|
||||||
|
theorem len_nil {A : (Type U)} : len (@nil A) = zero
|
||||||
|
:= have H1 : rep (@nil A) = (pair (λ n : num, @none A) zero : list_rep A),
|
||||||
|
from rep_abst (list::inhab A) (nil_rep A) (nil_pred A),
|
||||||
|
have H2 : len (@nil A) = proj2 (rep (@nil A)),
|
||||||
|
from refl (len (@nil A)),
|
||||||
|
have H3 : proj2 (rep (@nil A)) = zero,
|
||||||
|
from proj2_congr H1,
|
||||||
|
trans H2 H3
|
||||||
|
|
||||||
|
definition cons_rep {A : (Type U)} (h : A) (t : list A) : list_rep A
|
||||||
|
:= pair (λ n, if n = (len t) then (some h) else (fn t) n) (succ (len t))
|
||||||
|
|
||||||
|
theorem cons_rep_fn_at {A : (Type U)} (h : A) (t : list A) (i : num)
|
||||||
|
: (proj1 (cons_rep h t)) i = (if i = len t then some h else (fn t) i)
|
||||||
|
:= have Heq : proj1 (cons_rep h t) = λ n, if n = len t then some h else (fn t) n,
|
||||||
|
from refl (proj1 (cons_rep h t)),
|
||||||
|
congr1 Heq i
|
||||||
|
|
||||||
|
definition cons_pred {A : (Type U)} (h : A) (t : list A) : list_pred A (cons_rep h t)
|
||||||
|
:= take i : num,
|
||||||
|
let c := cons_rep h t in
|
||||||
|
have Hci : (proj1 c) i = (if i = (len t) then (some h) else (fn t) i),
|
||||||
|
from cons_rep_fn_at h t i,
|
||||||
|
have Ht : ∀ i, i < (len t) ↔ (fn t) i ≠ (@none A),
|
||||||
|
from P_rep t,
|
||||||
|
iff_intro
|
||||||
|
(assume Hl : i < (succ (len t)),
|
||||||
|
or_elim (em (i = len t))
|
||||||
|
(assume Heq : i = len t,
|
||||||
|
calc (proj1 c) i = (if i = (len t) then (some h) else (fn t) i) : Hci
|
||||||
|
... = some h : by simp
|
||||||
|
... ≠ @none A : optional::distinct h)
|
||||||
|
(assume Hne : i ≠ len t,
|
||||||
|
have Hlt : i < len t,
|
||||||
|
from lt_succ_ne_to_lt Hl Hne,
|
||||||
|
calc (proj1 c) i = (if i = (len t) then (some h) else (fn t) i) : Hci
|
||||||
|
... = (fn t) i : by simp
|
||||||
|
... ≠ @none A : (Ht i) ◂ Hlt))
|
||||||
|
(assume Hr : (proj1 c) i ≠ (@none A),
|
||||||
|
or_elim (em (i = len t))
|
||||||
|
(assume Heq : i = len t,
|
||||||
|
subst (n_lt_succ_n (len t)) (symm Heq))
|
||||||
|
(assume Hne : i ≠ len t,
|
||||||
|
have Hne2 : (fn t) i ≠ (@none A),
|
||||||
|
from calc (fn t) i = (if i = (len t) then (some h) else (fn t) i) : by simp
|
||||||
|
... = (proj1 c) i : symm Hci
|
||||||
|
... ≠ (@none A) : Hr,
|
||||||
|
have Hlt : i < len t,
|
||||||
|
from (symm (Ht i)) ◂ Hne2,
|
||||||
|
show i < succ (len t),
|
||||||
|
from lt_to_lt_succ Hlt))
|
||||||
|
|
||||||
|
definition cons {A : (Type U)} (h : A) (t : list A) : list A
|
||||||
|
:= abst (cons_rep h t) (list::inhab A)
|
||||||
|
|
||||||
|
theorem cons_fn_at {A : (Type U)} (h : A) (t : list A) (i : num)
|
||||||
|
: (fn (cons h t)) i = (if i = len t then some h else (fn t) i)
|
||||||
|
:= have H1 : rep (cons h t) = (cons_rep h t) ,
|
||||||
|
from rep_abst (list::inhab A) (cons_rep h t) (cons_pred h t),
|
||||||
|
have H2 : fn (cons h t) = proj1 (cons_rep h t),
|
||||||
|
from proj1_congr H1,
|
||||||
|
have H3 : fn (cons h t) i = (proj1 (cons_rep h t)) i,
|
||||||
|
from congr1 H2 i,
|
||||||
|
have H4 : (proj1 (cons_rep h t)) i = (if i = len t then some h else (fn t) i),
|
||||||
|
from cons_rep_fn_at h t i,
|
||||||
|
trans H3 H4
|
||||||
|
|
||||||
|
theorem len_cons {A : (Type U)} (h : A) (t : list A) : len (cons h t) = succ (len t)
|
||||||
|
:= have H1 : rep (cons h t) = cons_rep h t,
|
||||||
|
from rep_abst (list::inhab A) (cons_rep h t) (cons_pred h t),
|
||||||
|
have H2 : proj2 (cons_rep h t) = succ (len t),
|
||||||
|
from refl (proj2 (cons_rep h t)),
|
||||||
|
have H3 : proj2 (rep (cons h t)) = proj2 (cons_rep h t),
|
||||||
|
from proj2_congr H1,
|
||||||
|
trans H3 H2
|
||||||
|
|
||||||
|
theorem cons_ne_nil {A : (Type U)} (h : A) (t : list A) : cons h t ≠ nil
|
||||||
|
:= not_intro (assume R : cons h t = nil,
|
||||||
|
have Heq1 : cons_rep h t = (nil_rep A),
|
||||||
|
from abst_inj (list::inhab A) (cons_pred h t) (nil_pred A) R,
|
||||||
|
have Heq2 : succ (len t) = zero,
|
||||||
|
from proj2_congr Heq1,
|
||||||
|
absurd Heq2 (succ_nz (len t)))
|
||||||
|
|
||||||
|
theorem flip_iff {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
|
||||||
|
:= subst (refl (¬ a)) H
|
||||||
|
|
||||||
|
theorem cons_inj {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → h1 = h2 ∧ t1 = t2
|
||||||
|
:= assume Heq : cons h1 t1 = cons h2 t2,
|
||||||
|
have Heq_rep : (cons_rep h1 t1) = (cons_rep h2 t2),
|
||||||
|
from abst_inj (list::inhab A) (cons_pred h1 t1) (cons_pred h2 t2) Heq,
|
||||||
|
have Heq_len : len t1 = len t2,
|
||||||
|
from succ_inj (proj2_congr Heq_rep),
|
||||||
|
have Heq_fn : (λ n, if n = len t2 then some h1 else (fn t1) n) =
|
||||||
|
(λ n, if n = len t2 then some h2 else (fn t2) n),
|
||||||
|
from subst (proj1_congr Heq_rep) Heq_len,
|
||||||
|
have Heq_some : some h1 = some h2,
|
||||||
|
from calc some h1 = if len t2 = len t2 then some h1 else (fn t1) (len t2) : by simp
|
||||||
|
... = if len t2 = len t2 then some h2 else (fn t2) (len t2) : congr1 Heq_fn (len t2)
|
||||||
|
... = some h2 : by simp,
|
||||||
|
have Heq_head : h1 = h2,
|
||||||
|
from optional::injectivity Heq_some,
|
||||||
|
have Heq_fn_t : fn t1 = fn t2,
|
||||||
|
from funext (λ i,
|
||||||
|
or_elim (em (i = len t2))
|
||||||
|
(λ Heqi : i = len t2,
|
||||||
|
have Hlti2 : ¬ (i < len t2),
|
||||||
|
from eq_to_not_lt Heqi,
|
||||||
|
have Hlti1 : ¬ (i < len t1),
|
||||||
|
from subst Hlti2 (symm Heq_len),
|
||||||
|
have Ht1 : i < len t1 ↔ (fn t1) i ≠ (@none A),
|
||||||
|
from P_rep t1 i,
|
||||||
|
have Ht2 : i < len t2 ↔ (fn t2) i ≠ (@none A),
|
||||||
|
from P_rep t2 i,
|
||||||
|
have Heq1 : (fn t1) i = (@none A),
|
||||||
|
from not_not_elim ((flip_iff Ht1) ◂ Hlti1),
|
||||||
|
have Heq2 : (fn t2) i = (@none A),
|
||||||
|
from not_not_elim ((flip_iff Ht2) ◂ Hlti2),
|
||||||
|
trans Heq1 (symm Heq2))
|
||||||
|
(λ Hnei : i ≠ len t2,
|
||||||
|
calc fn t1 i = if i = len t2 then some h1 else (fn t1) i : by simp
|
||||||
|
... = if i = len t2 then some h2 else (fn t2) i : congr1 Heq_fn i
|
||||||
|
... = fn t2 i : by simp)),
|
||||||
|
have Heq_tail : t1 = t2,
|
||||||
|
from ext Heq_len Heq_fn_t,
|
||||||
|
and_intro Heq_head Heq_tail
|
||||||
|
|
||||||
|
theorem cons_inj_head {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → h1 = h2
|
||||||
|
:= assume H, and_eliml (cons_inj H)
|
||||||
|
|
||||||
|
theorem cons_inj_tail {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → t1 = t2
|
||||||
|
:= assume H, and_elimr (cons_inj H)
|
||||||
|
|
||||||
|
set_opaque list true
|
||||||
|
set_opaque cons true
|
||||||
|
set_opaque nil true
|
||||||
|
set_opaque len true
|
||||||
|
end
|
||||||
|
definition list := list::list
|
Loading…
Reference in a new issue