feat(builtin): define list, cons, nil and prove basic theorems

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-02-11 21:31:17 -08:00
parent bfe64a7031
commit 69bccb6014

195
src/builtin/list.lean Normal file
View file

@ -0,0 +1,195 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import num subtype optional macros tactic
using num
using subtype
namespace list
definition none {A : (Type U)} : optional A
:= optional::@none A
definition some {A : (Type U)} (a : A) : optional A
:= optional::some a
definition list_rep (A : (Type U))
:= (num → optional A) # num
definition list_pred (A : (Type U))
:= λ p : list_rep A, ∀ i, i < (proj2 p) ↔ (proj1 p) i ≠ (@none A)
definition list (A : (Type U))
:= subtype (list_rep A) (list_pred A)
definition len {A : (Type U)} (l : list A) : num
:= proj2 (rep l)
definition fn {A : (Type U)} (l : list A) : num → optional A
:= proj1 (rep l)
theorem ext {A : (Type U)} {l1 l2 : list A} (H1 : len l1 = len l2) (H2 : fn l1 = fn l2) : l1 = l2
:= have Heq : rep l1 = rep l2,
from pairext _ _ H2 (to_heq H1),
rep_inj Heq
definition nil_rep (A : (Type U)) : list_rep A
:= (pair (λ n : num, @none A) zero : list_rep A)
theorem nil_pred (A : (Type U)) : list_pred A (nil_rep A)
:= take i : num,
let nil := nil_rep A
in iff_intro
(assume Hl : i < (proj2 nil),
have H1 : i < zero,
from Hl,
absurd_elim ((proj1 nil) i ≠ (@none A)) H1 (not_lt_zero i))
(assume Hr : (proj1 nil) i ≠ (@none A),
have H1 : (@none A) ≠ (@none A),
from Hr,
false_elim (i < (proj2 nil)) (a_neq_a_elim H1))
theorem inhab (A : (Type U)) : inhabited (list A)
:= subtype_inhabited (exists_intro (nil_rep A) (nil_pred A))
definition nil {A : (Type U)} : list A
:= abst (nil_rep A) (list::inhab A)
theorem len_nil {A : (Type U)} : len (@nil A) = zero
:= have H1 : rep (@nil A) = (pair (λ n : num, @none A) zero : list_rep A),
from rep_abst (list::inhab A) (nil_rep A) (nil_pred A),
have H2 : len (@nil A) = proj2 (rep (@nil A)),
from refl (len (@nil A)),
have H3 : proj2 (rep (@nil A)) = zero,
from proj2_congr H1,
trans H2 H3
definition cons_rep {A : (Type U)} (h : A) (t : list A) : list_rep A
:= pair (λ n, if n = (len t) then (some h) else (fn t) n) (succ (len t))
theorem cons_rep_fn_at {A : (Type U)} (h : A) (t : list A) (i : num)
: (proj1 (cons_rep h t)) i = (if i = len t then some h else (fn t) i)
:= have Heq : proj1 (cons_rep h t) = λ n, if n = len t then some h else (fn t) n,
from refl (proj1 (cons_rep h t)),
congr1 Heq i
definition cons_pred {A : (Type U)} (h : A) (t : list A) : list_pred A (cons_rep h t)
:= take i : num,
let c := cons_rep h t in
have Hci : (proj1 c) i = (if i = (len t) then (some h) else (fn t) i),
from cons_rep_fn_at h t i,
have Ht : ∀ i, i < (len t) ↔ (fn t) i ≠ (@none A),
from P_rep t,
iff_intro
(assume Hl : i < (succ (len t)),
or_elim (em (i = len t))
(assume Heq : i = len t,
calc (proj1 c) i = (if i = (len t) then (some h) else (fn t) i) : Hci
... = some h : by simp
... ≠ @none A : optional::distinct h)
(assume Hne : i ≠ len t,
have Hlt : i < len t,
from lt_succ_ne_to_lt Hl Hne,
calc (proj1 c) i = (if i = (len t) then (some h) else (fn t) i) : Hci
... = (fn t) i : by simp
... ≠ @none A : (Ht i) ◂ Hlt))
(assume Hr : (proj1 c) i ≠ (@none A),
or_elim (em (i = len t))
(assume Heq : i = len t,
subst (n_lt_succ_n (len t)) (symm Heq))
(assume Hne : i ≠ len t,
have Hne2 : (fn t) i ≠ (@none A),
from calc (fn t) i = (if i = (len t) then (some h) else (fn t) i) : by simp
... = (proj1 c) i : symm Hci
... ≠ (@none A) : Hr,
have Hlt : i < len t,
from (symm (Ht i)) ◂ Hne2,
show i < succ (len t),
from lt_to_lt_succ Hlt))
definition cons {A : (Type U)} (h : A) (t : list A) : list A
:= abst (cons_rep h t) (list::inhab A)
theorem cons_fn_at {A : (Type U)} (h : A) (t : list A) (i : num)
: (fn (cons h t)) i = (if i = len t then some h else (fn t) i)
:= have H1 : rep (cons h t) = (cons_rep h t) ,
from rep_abst (list::inhab A) (cons_rep h t) (cons_pred h t),
have H2 : fn (cons h t) = proj1 (cons_rep h t),
from proj1_congr H1,
have H3 : fn (cons h t) i = (proj1 (cons_rep h t)) i,
from congr1 H2 i,
have H4 : (proj1 (cons_rep h t)) i = (if i = len t then some h else (fn t) i),
from cons_rep_fn_at h t i,
trans H3 H4
theorem len_cons {A : (Type U)} (h : A) (t : list A) : len (cons h t) = succ (len t)
:= have H1 : rep (cons h t) = cons_rep h t,
from rep_abst (list::inhab A) (cons_rep h t) (cons_pred h t),
have H2 : proj2 (cons_rep h t) = succ (len t),
from refl (proj2 (cons_rep h t)),
have H3 : proj2 (rep (cons h t)) = proj2 (cons_rep h t),
from proj2_congr H1,
trans H3 H2
theorem cons_ne_nil {A : (Type U)} (h : A) (t : list A) : cons h t ≠ nil
:= not_intro (assume R : cons h t = nil,
have Heq1 : cons_rep h t = (nil_rep A),
from abst_inj (list::inhab A) (cons_pred h t) (nil_pred A) R,
have Heq2 : succ (len t) = zero,
from proj2_congr Heq1,
absurd Heq2 (succ_nz (len t)))
theorem flip_iff {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
:= subst (refl (¬ a)) H
theorem cons_inj {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → h1 = h2 ∧ t1 = t2
:= assume Heq : cons h1 t1 = cons h2 t2,
have Heq_rep : (cons_rep h1 t1) = (cons_rep h2 t2),
from abst_inj (list::inhab A) (cons_pred h1 t1) (cons_pred h2 t2) Heq,
have Heq_len : len t1 = len t2,
from succ_inj (proj2_congr Heq_rep),
have Heq_fn : (λ n, if n = len t2 then some h1 else (fn t1) n) =
(λ n, if n = len t2 then some h2 else (fn t2) n),
from subst (proj1_congr Heq_rep) Heq_len,
have Heq_some : some h1 = some h2,
from calc some h1 = if len t2 = len t2 then some h1 else (fn t1) (len t2) : by simp
... = if len t2 = len t2 then some h2 else (fn t2) (len t2) : congr1 Heq_fn (len t2)
... = some h2 : by simp,
have Heq_head : h1 = h2,
from optional::injectivity Heq_some,
have Heq_fn_t : fn t1 = fn t2,
from funext (λ i,
or_elim (em (i = len t2))
(λ Heqi : i = len t2,
have Hlti2 : ¬ (i < len t2),
from eq_to_not_lt Heqi,
have Hlti1 : ¬ (i < len t1),
from subst Hlti2 (symm Heq_len),
have Ht1 : i < len t1 ↔ (fn t1) i ≠ (@none A),
from P_rep t1 i,
have Ht2 : i < len t2 ↔ (fn t2) i ≠ (@none A),
from P_rep t2 i,
have Heq1 : (fn t1) i = (@none A),
from not_not_elim ((flip_iff Ht1) ◂ Hlti1),
have Heq2 : (fn t2) i = (@none A),
from not_not_elim ((flip_iff Ht2) ◂ Hlti2),
trans Heq1 (symm Heq2))
(λ Hnei : i ≠ len t2,
calc fn t1 i = if i = len t2 then some h1 else (fn t1) i : by simp
... = if i = len t2 then some h2 else (fn t2) i : congr1 Heq_fn i
... = fn t2 i : by simp)),
have Heq_tail : t1 = t2,
from ext Heq_len Heq_fn_t,
and_intro Heq_head Heq_tail
theorem cons_inj_head {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → h1 = h2
:= assume H, and_eliml (cons_inj H)
theorem cons_inj_tail {A : (Type U)} {h1 h2 : A} {t1 t2 : list A} : cons h1 t1 = cons h2 t2 → t1 = t2
:= assume H, and_elimr (cons_inj H)
set_opaque list true
set_opaque cons true
set_opaque nil true
set_opaque len true
end
definition list := list::list