perf(kernel/expr_eq_fn): use thread local cache, and avoid memory allocation/deallocation

This commit is contained in:
Leonardo de Moura 2014-10-17 16:39:39 -07:00
parent 7cc3dd0b4d
commit 6d64da2981
5 changed files with 117 additions and 109 deletions

View file

@ -482,9 +482,6 @@ unsigned get_weight(expr const & e) {
lean_unreachable(); // LCOV_EXCL_LINE
}
bool operator==(expr const & a, expr const & b) { return expr_eq_fn()(a, b); }
bool is_bi_equal(expr const & a, expr const & b) { return expr_eq_fn(true)(a, b); }
expr copy_tag(expr const & e, expr && new_e) {
tag t = e.get_tag();
if (t != nulltag)

View file

@ -25,6 +25,7 @@ Author: Leonardo de Moura
#include "kernel/level.h"
#include "kernel/formatter.h"
#include "kernel/extension_context.h"
#include "kernel/expr_eq_fn.h"
namespace lean {
// Tags are used by frontends to mark expressions. They are automatically propagated by
@ -148,16 +149,6 @@ public:
expr copy_tag(expr const & e, expr && new_e);
// =======================================
// Structural equality
/** \brief Binder information is ignored in the following predicate */
bool operator==(expr const & a, expr const & b);
inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); }
/** \brief Similar to ==, but it also compares binder information */
bool is_bi_equal(expr const & a, expr const & b);
struct is_bi_equal_proc { bool operator()(expr const & e1, expr const & e2) const { return is_bi_equal(e1, e2); } };
// =======================================
SPECIALIZE_OPTIONAL_FOR_SMART_PTR(expr)
inline optional<expr> none_expr() { return optional<expr>(); }

View file

@ -4,67 +4,116 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "kernel/expr_eq_fn.h"
#include <vector>
#include <memory>
#include "util/interrupt.h"
#include "util/thread.h"
#include "kernel/expr.h"
#include "kernel/expr_sets.h"
#ifndef LEAN_EQ_CACHE_THRESHOLD
#define LEAN_EQ_CACHE_THRESHOLD 4
#ifndef LEAN_EQ_CACHE_CAPACITY
#define LEAN_EQ_CACHE_CAPACITY 1024*8
#endif
namespace lean {
bool expr_eq_fn::apply(expr const & a, expr const & b) {
if (is_eqp(a, b)) return true;
if (a.hash() != b.hash()) return false;
if (a.kind() != b.kind()) return false;
if (is_var(a)) return var_idx(a) == var_idx(b);
if (m_counter >= LEAN_EQ_CACHE_THRESHOLD && is_shared(a) && is_shared(b)) {
auto p = std::make_pair(a.raw(), b.raw());
if (!m_eq_visited)
m_eq_visited.reset(new expr_cell_pair_set);
if (m_eq_visited->find(p) != m_eq_visited->end())
struct eq_cache {
struct entry {
expr_ptr m_a;
expr_ptr m_b;
entry():m_a(nullptr), m_b(nullptr) {}
};
unsigned m_capacity;
std::vector<entry> m_cache;
std::vector<unsigned> m_used;
eq_cache():m_capacity(LEAN_EQ_CACHE_CAPACITY), m_cache(LEAN_EQ_CACHE_CAPACITY) {}
bool check(expr const & a, expr const & b) {
unsigned i = hash(a.hash_alloc(), b.hash_alloc()) % m_capacity;
if (m_cache[i].m_a == a.raw() && m_cache[i].m_b == b.raw()) {
return true;
m_eq_visited->insert(p);
}
check_system("expression equality test");
switch (a.kind()) {
case expr_kind::Var:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::Constant:
return
const_name(a) == const_name(b) &&
compare(const_levels(a), const_levels(b), [](level const & l1, level const & l2) { return l1 == l2; });
case expr_kind::Meta:
return
mlocal_name(a) == mlocal_name(b) &&
apply(mlocal_type(a), mlocal_type(b));
case expr_kind::Local:
return
mlocal_name(a) == mlocal_name(b) &&
apply(mlocal_type(a), mlocal_type(b)) &&
(!m_compare_binder_info || local_pp_name(a) == local_pp_name(b)) &&
(!m_compare_binder_info || local_info(a) == local_info(b));
case expr_kind::App:
m_counter++;
return
apply(app_fn(a), app_fn(b)) &&
apply(app_arg(a), app_arg(b));
case expr_kind::Lambda: case expr_kind::Pi:
m_counter++;
return
apply(binding_domain(a), binding_domain(b)) &&
apply(binding_body(a), binding_body(b)) &&
(!m_compare_binder_info || binding_info(a) == binding_info(b));
case expr_kind::Sort:
return sort_level(a) == sort_level(b);
case expr_kind::Macro:
m_counter++;
if (macro_def(a) != macro_def(b) || macro_num_args(a) != macro_num_args(b))
} else {
if (m_cache[i].m_a == nullptr)
m_used.push_back(i);
m_cache[i].m_a = a.raw();
m_cache[i].m_b = b.raw();
return false;
for (unsigned i = 0; i < macro_num_args(a); i++) {
if (!apply(macro_arg(a, i), macro_arg(b, i)))
return false;
}
return true;
}
lean_unreachable(); // LCOV_EXCL_LINE
void clear() {
for (unsigned i : m_used)
m_cache[i].m_a = nullptr;
m_used.clear();
}
};
MK_THREAD_LOCAL_GET_DEF(eq_cache, get_eq_cache);
/** \brief Functional object for comparing expressions.
Remark if CompareBinderInfo is true, then functional object will also compare
binder information attached to lambda and Pi expressions */
template<bool CompareBinderInfo>
class expr_eq_fn {
eq_cache & m_cache;
bool apply(expr const & a, expr const & b) {
if (is_eqp(a, b)) return true;
if (a.hash() != b.hash()) return false;
if (a.kind() != b.kind()) return false;
if (is_var(a)) return var_idx(a) == var_idx(b);
if (m_cache.check(a, b))
return true;
check_system("expression equality test");
switch (a.kind()) {
case expr_kind::Var:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::Constant:
return
const_name(a) == const_name(b) &&
compare(const_levels(a), const_levels(b), [](level const & l1, level const & l2) { return l1 == l2; });
case expr_kind::Meta:
return
mlocal_name(a) == mlocal_name(b) &&
apply(mlocal_type(a), mlocal_type(b));
case expr_kind::Local:
return
mlocal_name(a) == mlocal_name(b) &&
apply(mlocal_type(a), mlocal_type(b)) &&
(!CompareBinderInfo || local_pp_name(a) == local_pp_name(b)) &&
(!CompareBinderInfo || local_info(a) == local_info(b));
case expr_kind::App:
return
apply(app_fn(a), app_fn(b)) &&
apply(app_arg(a), app_arg(b));
case expr_kind::Lambda: case expr_kind::Pi:
return
apply(binding_domain(a), binding_domain(b)) &&
apply(binding_body(a), binding_body(b)) &&
(!CompareBinderInfo || binding_info(a) == binding_info(b));
case expr_kind::Sort:
return sort_level(a) == sort_level(b);
case expr_kind::Macro:
if (macro_def(a) != macro_def(b) || macro_num_args(a) != macro_num_args(b))
return false;
for (unsigned i = 0; i < macro_num_args(a); i++) {
if (!apply(macro_arg(a, i), macro_arg(b, i)))
return false;
}
return true;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
public:
expr_eq_fn():m_cache(get_eq_cache()) {}
~expr_eq_fn() { m_cache.clear(); }
bool operator()(expr const & a, expr const & b) { return apply(a, b); }
};
bool is_equal(expr const & a, expr const & b) {
return expr_eq_fn<false>()(a, b);
}
bool is_bi_equal(expr const & a, expr const & b) {
return expr_eq_fn<true>()(a, b);
}
}

View file

@ -1,31 +1,22 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <memory>
#include "util/interrupt.h"
#include "kernel/expr.h"
#include "kernel/expr_sets.h"
namespace lean {
/**
\brief Functional object for comparing expressions.
*/
class expr_eq_fn {
bool m_compare_binder_info;
// We only use the cache m_eq_visited when m_counter > LEAN_EQ_CACHE_THRESHOLD.
// The idea is that most queries fail quickly, and it is a wast of time
// to create the cache.
unsigned m_counter;
std::unique_ptr<expr_cell_pair_set> m_eq_visited;
bool apply(expr const & a, expr const & b);
public:
/** \brief If \c is true, then functional object will also compare binder information attached to lambda and Pi expressions */
expr_eq_fn(bool c = false):m_compare_binder_info(c), m_counter(0) {}
bool operator()(expr const & a, expr const & b) { m_counter = 0; return apply(a, b); }
void clear() { m_eq_visited.reset(); }
};
class expr;
// =======================================
// Structural equality
/** \brief Binder information is ignored in the following predicate */
bool is_equal(expr const & a, expr const & b);
inline bool operator==(expr const & a, expr const & b) { return is_equal(a, b); }
inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); }
// =======================================
/** \brief Similar to ==, but it also compares binder information */
bool is_bi_equal(expr const & a, expr const & b);
struct is_bi_equal_proc { bool operator()(expr const & e1, expr const & e2) const { return is_bi_equal(e1, e2); } };
}

View file

@ -12,32 +12,12 @@ Author: Leonardo de Moura
#include "kernel/expr.h"
namespace lean {
// =======================================
// Expression Set
// Remark: to expressions are assumed to be equal if they are "pointer-equal"
typedef std::unordered_set<expr, expr_hash_alloc, expr_eqp> expr_set;
// =======================================
// =======================================
// (low level) Expression Cell pair Set
// Remark: to expressions are assumed to be equal if they are "pointer-equal"
//
// WARNING: use with care, this kind of set
// does not prevent an expression from being
// garbage collected.
typedef pair<expr_cell *, expr_cell *> expr_cell_pair;
struct expr_cell_pair_hash {
unsigned operator()(expr_cell_pair const & p) const { return hash(p.first->hash_alloc(), p.second->hash_alloc()); }
};
struct expr_cell_pair_eqp {
bool operator()(expr_cell_pair const & p1, expr_cell_pair const & p2) const {
return p1.first == p2.first && p1.second == p2.second;
}
};
typedef std::unordered_set<expr_cell_pair, expr_cell_pair_hash, expr_cell_pair_eqp> expr_cell_pair_set;
// =======================================
// Similar to expr_set, but using structural equality
typedef std::unordered_set<expr, expr_hash, std::equal_to<expr>> expr_struct_set;
}