refactor(library/algebra): fix theorem names
This commit is contained in:
parent
f7ea9a5f64
commit
6d6a00f48b
4 changed files with 57 additions and 57 deletions
|
@ -276,7 +276,7 @@ end complete_lattice
|
|||
section
|
||||
open eq.ops complete_lattice
|
||||
|
||||
definition complete_lattice_fun [instance] {A B : Type} [complete_lattice B] :
|
||||
definition complete_lattice_fun [instance] (A B : Type) [complete_lattice B] :
|
||||
complete_lattice (A → B) :=
|
||||
⦃ complete_lattice, lattice_fun,
|
||||
Inf := λS x, Inf ((λf, f x) ' S),
|
||||
|
@ -308,7 +308,7 @@ definition complete_lattice_Prop [instance] : complete_lattice Prop :=
|
|||
H _ Ht true.intro
|
||||
⦄
|
||||
|
||||
lemma sInter_eq_fun_Inf {A : Type} (S : set (set A)) : ⋂₀ S = @Inf (A → Prop) _ S :=
|
||||
lemma sInter_eq_Inf_fun {A : Type} (S : set (set A)) : ⋂₀ S = @Inf (A → Prop) _ S :=
|
||||
funext (take x,
|
||||
calc
|
||||
(⋂₀ S) x = ∀₀ P ∈ S, P x : rfl
|
||||
|
@ -322,19 +322,19 @@ funext (take x,
|
|||
end
|
||||
... = @Inf (A → Prop) _ S x : rfl)
|
||||
|
||||
lemma sUnion_eq_fun_Sup {A : Type} (S : set (set A)) : ⋃₀ S = @Sup (A → Prop) _ S :=
|
||||
lemma sUnion_eq_Sup_fun {A : Type} (S : set (set A)) : ⋃₀ S = @Sup (A → Prop) _ S :=
|
||||
funext (take x,
|
||||
calc
|
||||
(⋃₀ S) x = ∃₀ P ∈ S, P x : rfl
|
||||
... = (∃₀ P ∈ S, P x = true) :
|
||||
begin |