diff --git a/library/logic/axioms/em.lean b/library/logic/axioms/em.lean index 7b644e359..e989b0736 100644 --- a/library/logic/axioms/em.lean +++ b/library/logic/axioms/em.lean @@ -3,9 +3,53 @@ Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -Excluded middle - -Remark: This axiom can be derived from propext funext and hilbert. -See examples/diaconescu +Prove excluded middle using: excluded middle follows from Hilbert's choice operator, function extensionality, +and Prop extensionality -/ -axiom em (a : Prop) : a ∨ ¬a +import logic.axioms.hilbert logic.eq +open eq.ops + +section +parameter p : Prop + +private definition U (x : Prop) : Prop := x = true ∨ p +private definition V (x : Prop) : Prop := x = false ∨ p + +private noncomputable definition u := epsilon U +private noncomputable definition v := epsilon V + +private lemma u_def : U u := +epsilon_spec (exists.intro true (or.inl rfl)) + +private lemma v_def : V v := +epsilon_spec (exists.intro false (or.inl rfl)) + +private lemma not_uv_or_p : ¬(u = v) ∨ p := +or.elim u_def + (assume Hut : u = true, + or.elim v_def + (assume Hvf : v = false, + have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false, + or.inl Hne) + (assume Hp : p, or.inr Hp)) + (assume Hp : p, or.inr Hp) + +private lemma p_implies_uv : p → u = v := +assume Hp : p, +have Hpred : U = V, from + funext (take x : Prop, + have Hl : (x = true ∨ p) → (x = false ∨ p), from + assume A, or.inr Hp, + have Hr : (x = false ∨ p) → (x = true ∨ p), from + assume A, or.inr Hp, + show (x = true ∨ p) = (x = false ∨ p), from + propext (iff.intro Hl Hr)), +have H' : epsilon U = epsilon V, from Hpred ▸ rfl, +show u = v, from H' + +theorem em : p ∨ ¬p := +have H : ¬(u = v) → ¬p, from mt p_implies_uv, + or.elim not_uv_or_p + (assume Hne : ¬(u = v), or.inr (H Hne)) + (assume Hp : p, or.inl Hp) +end diff --git a/library/logic/axioms/examples/diaconescu.lean b/library/logic/axioms/examples/diaconescu.lean deleted file mode 100644 index 0fa6956e8..000000000 --- a/library/logic/axioms/examples/diaconescu.lean +++ /dev/null @@ -1,58 +0,0 @@ -/- -Copyright (c) 2014 Microsoft Corporation. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Author: Leonardo de Moura --/ - -import logic.axioms.hilbert logic.eq -open eq.ops - -/- -Diaconescu’s theorem: excluded middle follows from Hilbert's choice operator, function extensionality, - and Prop extensionality --/ - -section -parameter p : Prop - -private definition U (x : Prop) : Prop := x = true ∨ p -private definition V (x : Prop) : Prop := x = false ∨ p - -private noncomputable definition u := epsilon U -private noncomputable definition v := epsilon V - -private lemma u_def : U u := -epsilon_spec (exists.intro true (or.inl rfl)) - -private lemma v_def : V v := -epsilon_spec (exists.intro false (or.inl rfl)) - -private lemma not_uv_or_p : ¬(u = v) ∨ p := -or.elim u_def - (assume Hut : u = true, - or.elim v_def - (assume Hvf : v = false, - have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false, - or.inl Hne) - (assume Hp : p, or.inr Hp)) - (assume Hp : p, or.inr Hp) - -private lemma p_implies_uv : p → u = v := -assume Hp : p, -have Hpred : U = V, from - funext (take x : Prop, - have Hl : (x = true ∨ p) → (x = false ∨ p), from - assume A, or.inr Hp, - have Hr : (x = false ∨ p) → (x = true ∨ p), from - assume A, or.inr Hp, - show (x = true ∨ p) = (x = false ∨ p), from - propext (iff.intro Hl Hr)), -have H' : epsilon U = epsilon V, from Hpred ▸ rfl, -show u = v, from H' - -theorem em : p ∨ ¬p := -have H : ¬(u = v) → ¬p, from mt p_implies_uv, - or.elim not_uv_or_p - (assume Hne : ¬(u = v), or.inr (H Hne)) - (assume Hp : p, or.inl Hp) -end diff --git a/tests/lean/print_ax2.lean.expected.out b/tests/lean/print_ax2.lean.expected.out index da3bfe503..ca8b82d0b 100644 --- a/tests/lean/print_ax2.lean.expected.out +++ b/tests/lean/print_ax2.lean.expected.out @@ -1,4 +1,3 @@ quot.sound : ∀ {A : Type} [s : setoid A] {a b : A}, setoid.r a b → quot.mk a = quot.mk b -em : ∀ (a : Prop), a ∨ ¬a propext : ∀ {a b : Prop}, (a ↔ b) → a = b strong_indefinite_description : Π {A : Type} (P : A → Prop), nonempty A → { (x : A)| Exists P → P x}